Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2012, Vol. 7 Issue (2) : 193-199    https://doi.org/10.1007/s11467-011-0217-9
REVIEW ARTICLE
Superconductivity of topological matters induced via pressure
Jun-liang Zhang1,2, Si-jia Zhang1, Hong-ming Weng1, Wei Zhang1, Liu-xiang Yang1, Qing-qing Liu1, Pan-pan Kong1, Jie Zhu1, Shao-min Feng1, Xian-cheng Wang1, Ri-cheng Yu1, Lie-zhao Cao2, Shoucheng Zhang3, Xi Dai1, Zhong Fang1, Chang-qing Jin1()
1. Beijing National Laboratory for Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2. Department of Physics, University of Science & Technology of China, Hefei 230026, China; 3. Department of Physics, McCullough Building, Stanford University, Stanford, CA 94305-4045, USA & Center for Advanced Study, Tsinghua University, Beijing 100084, China
 Download: PDF(467 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

By applying pressure on the topological insulator Bi2Te3 single crystal, superconducting phase was found without a crystal structure phase transition. The new superconducting phase is under the pressure range of 3 GPa to 6 GPa. The high pressure Hall effect measurements indicated that the superconductivity caused by bulk hole pockets. The high pressure structure investigations with synchrotron X-ray diffraction indicated that the superconducting phase is of similar structure to that of ambient phase structure with only slight change with lattice parameter and internal atomic position. The topological band structures indicate the superconducting phase under high pressure remained topologically nontrivial. The results suggested that topological superconductivity can be realized in Bi2Te3 due to the proximity effect between superconducting bulk states and Diractype surface states. We also discussed the possibility that the bulk state could be a topological superconductor.

Keywords topological insulator      high pressure     
Corresponding Author(s): Jin Chang-qing,Email:Jin@iphy.ac.cn   
Issue Date: 01 April 2012
 Cite this article:   
Hong-ming Weng,Wei Zhang,Liu-xiang Yang, et al. Superconductivity of topological matters induced via pressure[J]. Front. Phys. , 2012, 7(2): 193-199.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-011-0217-9
https://academic.hep.com.cn/fop/EN/Y2012/V7/I2/193
1 B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science , 2006, 314(5806): 1757
doi: 10.1126/science.1133734
2 L. Fu and C. L. Kane, Phys. Rev. B , 2007, 76(4): 045302
doi: 10.1103/PhysRevB.76.045302
3 M. K?nig, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann,L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Science , 2007, 318(5851): 766
doi: 10.1126/science.1148047
4 D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature , 2008, 452: 970
doi: 10.1038/nature06843
5 Y. L. Chen, J. G. Analytis, J. H. Chu, Z. K. Liu, S. K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, Science , 2009, 325(5937): 178
doi: 10.1126/science.1173034
6 H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Nat. Phys. , 2009, 5: 438
doi: 10.1038/nphys1270
7 Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nat. Phys. , 2009, 5 : 398
doi: 10.1038/nphys1274
8 J. C. Y. Teo, L. Fu, and C. L. Kane, Phys. Rev. B , 2008, 78(4): 045426
doi: 10.1103/PhysRevB.78.045426
9 W. Zhang, R. Yu, H. J. Zhang, X. Dai, and Z. Fang, New J. Phys. , 2010, 12: 065013
doi: 10.1088/1367-2630/12/6/065013
10 Y. L. Chen, Z. K. LiuJ. G. Analytis, J. H. Chu, H. J. Zhang, B. H. Yan, S. K. Mo, R. G. Moore, D. H. Lu, I. R. Fisher, S. C. Zhang, Z. Hussain, and Z. X. Shen, Phys. Rev. Lett. , 2010, 105(26): 266401
doi: 10.1103/PhysRevLett.105.266401
11 X. L. Qi and S. C. Zhang, arXiv:1008.2026v1 , 2010
12 M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. , 2010, 82(4): 3045
doi: 10.1103/RevModPhys.82.3045
13 B. H. Yan, C. X. Liu, H. J. Zhang, C. Y. Yam, X. L. Qi, T. Frauenheim, and S. C. Zhang, Europhys. Lett. , 2010, 90(3): 37002
doi: 10.1209/0295-5075/90/37002
14 D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. H. Dil, J. Osterwalder, L. Patthey, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Phys. Rev. Lett. , 2009, 103(14) : 146401
doi: 10.1103/PhysRevLett.103.146401
15 X. L. Qi, R. D. Li, J. D. Zang, and S. C. Zhang, Science , 2009, 323(5918) : 1184
doi: 10.1126/science.1167747
16 X. L. Qi, T. L. Hughes, and S. C. Zhang, Phys. Rev. B , 2008, 78(19): 195424
doi: 10.1103/PhysRevB.78.195424
17 L. Fu and C. L. Kane, Phys. Rev. Lett. , 2008, 100(9): 096407
doi: 10.1103/PhysRevLett.100.096407
18 X. L. Qi, T. L. Hughes, S. Raghu, and S. C. Zhang, Phys. Rev. Lett. , 2009, 102(18): 187001
doi: 10.1103/PhysRevLett.102.187001
19 A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Phys. Rev. B , 2008, 78(19): 195125
doi: 10.1103/PhysRevB.78.195125
20 S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig, New J. Phys. , 2010, 12: 065010
doi: 10.1088/1367-2630/12/6/065010
21 Y. S. Hor, A. J. Williams, J. G. Checkelsky, P. Roushan, J. Seo, Q. Xu, H. W. Zandbergen, A. Yazdani, N. P. Ong, and R. J. Cava, Phys. Rev. Lett. , 2010, 104(5): 057001
doi: 10.1103/PhysRevLett.104.057001
22 L. A. Wray, S. Y. Xu, Y. Xia, Y. S. Hor, D. Qian, A. V. Fedorov, H. Lin, A. Bansil, R. J. Cava, and M. Z. Hasan, Nat. Phys. , 2010, 6: 855
doi: 10.1038/nphys1762
23 J. L. Zhang, S. J. Zhang, H. M. Weng, W. Zhang, L. X. Yang, Q. Q. Liu, S. M. Feng, X. C. Wang, R. C. Yu, L. Z. Cao, L. Wang, W. G. Yang, H. Z. Liu, W. Y. Zhao, S. C. Zhang, X. Dai, Z. Fang, and C. Q. Jin, Proc. Natl. Acad. Sci. USA , 2011, 108(1): 24
doi: 10.1073/pnas.1014085108
24 M. Einaga, Y. Tanabe, A. Nakayama, A. Ohmura, F. Ishikawa, and Y. Yamada, J. Phys.: Confer. Ser. , 2010, 215(1): 012036
doi: 10.1088/1742-6596/215/1/012036
25 C. Zhang et al., Phys. Rev. B , 2011,
26 N. R. Werthamer, E. Helfand, and P. C. Hohenberg, Phys. Rev. , 1966, 147: 295
doi: 10.1103/PhysRev.147.295
27 S. V. Ovsyannikov, V. V. Shchennikov, G. V. Vorontsov, A. Y. Manakov, A. Y. Likhacheva, and V. A. Kulbachinskii, J. Appl. Phys. , 2008, 104 : 053713
doi: 10.1063/1.2973201
28 A. Nakayama, M. Einaga, Y. Tanabe, S. Nakano, F. Ishikawa, and Y. Yamada, High Pressure Research , 2009, 29 : 245
doi: 10.1080/08957950902951633
29 M. Einaga, A. Ohmura, A. Nakayama, F. Ishikawa, Y. Yamada, and S. Nakano, Phys. Rev. B , 2011, 83(9): 092102
doi: 10.1103/PhysRevB.83.092102
30 B. H. Toby, Journal of Applied Crystallography , 2001, 34: 210
doi: 10.1107/S0021889801002242
31 X. L. Qi, T. L. Hughes, and S. C. Zhang, Phys. Rev. B , 2010, 81(13): 134508
doi: 10.1103/PhysRevB.81.134508
32 L. Fu and E. Berg, Phys. Rev. Lett. , 2010, 105(9): 097001
doi: 10.1103/PhysRevLett.105.097001
33 H. K. Mao and P. M. Bell, Science , 1976, 191(4229): 851
doi: 10.1126/science.191.4229.851
34 S. J. Zhang, X. C. Wang, R. Sammynaiken, J. S. Tse, L. X. Yang, Z. Li, Q. Q. Liu, S. Desgreniers, Y. Yao, H. Z. Liu, and C. Q. Jin, Phys. Rev. B , 2009, 80(1): 014506
doi: 10.1103/PhysRevB.80.014506
35 S. J. Zhang, X. C. Wang, Q. Q. Liu, Y. X. Lv, X. H. Yu, Z. J. Lin, Y. S. Zhao, L. Wang, Y. Ding, H. K. Mao, and C. Q. Jin, Europhys. Lett. , 2009, 88(4): 47008
doi: 10.1209/0295-5075/88/47008
36 http://www.openmx-square.org/
[1] Chen-Xiao Zhao (赵晨晓), Jin-Feng Jia (贾金锋). Stanene: A good platform for topological insulator and topological superconductor[J]. Front. Phys. , 2020, 15(5): 53201-.
[2] Chang-Yong Zhu, Shi-Han Zheng, Hou-Jian Duan, Ming-Xun Deng, Rui-Qiang Wang. Double Andreev reflections at surface states of the topological insulators with hexagonal warping[J]. Front. Phys. , 2020, 15(2): 23602-.
[3] Y. X. Zhao. Equivariant PT-symmetric real Chern insulators[J]. Front. Phys. , 2020, 15(1): 13603-.
[4] Mengyun He, Huimin Sun, Qing Lin He. Topological insulator: Spintronics and quantum computations[J]. Front. Phys. , 2019, 14(4): 43401-.
[5] Junjie Qi, Haiwen Liu, Hua Jiang, X. C. Xie. Dephasing effects in topological insulators[J]. Front. Phys. , 2019, 14(4): 43403-.
[6] Hai-Peng Sun, Hai-Zhou Lu. Quantum transport in topological semimetals under magnetic fields (II)[J]. Front. Phys. , 2019, 14(3): 33405-.
[7] Jian Lv, Xin Yang, Dan Xu, Yu-Xin Huang, Hong-Bo Wang, Hui Wang. High-pressure polymorphs of LiPN2: A first-principles study[J]. Front. Phys. , 2018, 13(5): 136104-.
[8] R. Szcz¸eśniak, A. P. Durajski. Superconductivity well above room temperature in compressed MgH6[J]. Front. Phys. , 2016, 11(6): 117406-.
[9] Dingping Li, Baruch Rosenstein, B. Ya. Shapiro, I. Shapiro. Chiral universality class of normal-superconducting and exciton condensation transitions on surface of topological insulator[J]. Front. Phys. , 2015, 10(3): 107402-.
[10] Ming Yang, Xiao-Long Zhang, Wu-Ming Liu. Tunable topological quantum states in three- and two-dimensional materials[J]. Front. Phys. , 2015, 10(2): 108102-.
[11] Yi-Bin Hu, Yong-Hong Zhao, Xue-Feng Wang. A computational investigation of topological insulator Bi2Se3 film[J]. Front. Phys. , 2014, 9(6): 760-767.
[12] Ying Xing (邢颖), Yi Sun (孙祎), Meenakshi Singh, Yan-Fei Zhao (赵弇斐), Moses H. W. Chan, Jian Wang (王健). Electronic transport properties of topological insulator films and low dimensional superconductors[J]. Front. Phys. , 2013, 8(5): 491-508.
[13] Yuan-Yuan Qi, Zhen-Wei Niu, Cai Cheng, Yan Cheng. Structural and elastic properties of Ce2O3 under pressure from LDA+U method[J]. Front. Phys. , 2013, 8(4): 405-411.
[14] Hui Li (李辉), Hailin Peng (彭海琳), Wenhui Dang (党文辉), Lili Yu (余力立), Zhongfan Liu (刘忠范). Topological insulator nanostructures: Materials synthesis, Raman spectroscopy, and transport properties[J]. Front. Phys. , 2012, 7(2): 208-217.
[15] Ivan Knez, Rui-Rui Du. Quantum spin Hall effect in inverted InAs/GaSb quantum wells[J]. Front. Phys. , 2012, 7(2): 200-207.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed