Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2011, Vol. 6 Issue (4) : 379-397    https://doi.org/10.1007/s11467-011-0222-z
REVIEW ARTICLE
Properties of the multiorbital Hubbard models for the iron-based superconductors
Elbio Dagotto1,2(), Adriana Moreo1,2, Andrew Nicholson1,2, Qinglong Luo1,2, Shuhua Liang1,2, Xiaotian Zhang1,2
1. Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN 37996, USA; 2. Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
 Download: PDF(1069 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A brief review of the main properties of multiorbital Hubbard models for the Fe-based superconductors is presented. The emphasis is on the results obtained by our group at the University of Tennessee and Oak Ridge National Laboratory, Tennessee, USA, but results by several other groups are also discussed. The models studied here have two, three, and five orbitals, and they are analyzed using a variety of computational and mean-field approximations. A “physical region” where the properties of the models are in qualitative agreement with neutron scattering, photoemission, and transport results is revealed. A variety of interesting open questions are briefly discussed such as: what are the dominant pairing tendencies in Hubbard models? Can pairing occur in an interorbital channel? Are nesting effects of fundamental relevance in the pnictides or approaches based on local moments are more important? What kind of magnetic states are found in the presence of iron vacancies? Can charge stripes exist in iron-based superconductors? Why is transport in the pnictides anisotropic? The discussion of results includes the description of these and other open problems in this fascinating area of research.

Keywords superconductivity     
Corresponding Author(s): Dagotto Elbio,Email:edagotto@utk.edu   
Issue Date: 05 December 2011
 Cite this article:   
Elbio Dagotto,Adriana Moreo,Andrew Nicholson, et al. Properties of the multiorbital Hubbard models for the iron-based superconductors[J]. Front. Phys. , 2011, 6(4): 379-397.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-011-0222-z
https://academic.hep.com.cn/fop/EN/Y2011/V6/I4/379
1 Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. , 2008, 130(11): 3296
doi: 10.1021/ja800073m
2 G. F. Chen, Z. Li, G. Li, J. Zhou, D. Wu, J. Dong, W. Z. Hu, P. Zheng, Z. J. Chen, H. Q. Yuan, J. Singleton, J. L. Luo, and N. L. Wang, Phys. Rev. Lett. , 2008, 101(5): 057007
doi: 10.1103/PhysRevLett.101.057007
3 G. F. Chen, Z. Li, D. Wu, G. Li, W. Z. Hu, J. Dong, P. Zheng, J. L. Luo, and N. L. Wang, Phys. Rev. Lett. , 2008, 100(24): 247002
doi: 10.1103/PhysRevLett.100.247002
4 H. H. Wen, G. Mu, L. Fang, H. Yang, and X. Zhu, Europhys. Lett. , 2008, 82(1): 17009
doi: 10.1209/0295-5075/82/17009
5 X. H. Chen, T. Wu, G. Wu, R. H. Liu, H. Chen, and D. F. Fang, Nature , 2008, 453(7196): 761
doi: 10.1038/nature07045
6 Z. A. Ren, J. Yang, W. Lu, W. Yi, G. C. Che, X. L. Dong, L. L. Sun, and Z. X. Zhao, Materials Research Innovations , 2008, 12(3): 105
doi: 10.1179/143307508X333686
7 Z. A. Ren, W. Lu, J. Yang, W. Yi, X. L. Shen, Z. C. Li, G. C. Che, X. L. Dong, L. L. Sun, F. Zhou, and Z. X. Zhao, Chin. Phys. Lett. , 2008, 25(7): 2215
doi: 10.1088/0256-307X/25/7/015
8 Z. A. Ren, G. C. Che, X. L. Dong, J. Yang, W. Lu, W. Yi, X. L. Shen, Z. C. Li, L. L. Sun, F. Zhou, and Z. X. Zhao, Europhys. Lett. , 2008, 83(1): 17002
doi: 10.1209/0295-5075/83/17002
9 E. Dagotto, Rev. Mod. Phys. , 1994, 66(3): 763
doi: 10.1103/RevModPhys.66.763
10 L. Boeri, O. V. Dolgov, and A. A. Golubov, Phys. Rev. Lett. , 2008, 101(2): 026403
doi: 10.1103/PhysRevLett.101.026403
11 S. Higashitaniguchi, M. Seto, S. Kitao, Y. Kobayashi, M. Saito, R. Masuda, T. Mitsui, Y. Yoda, Y. Kamihara, M. Hirano, and H. Hosono, Phys. Rev. B , 2008, 78(17): 174507
doi: 10.1103/PhysRevB.78.174507
12 A. D. Christianson, M. D. Lumsden, O. Delaire, M. B. Stone, D. L. Abernathy, M. A. McGuire, A. S. Sefat, R. Jin, B. C. Sales, D. Mandrus, E. D. Mun, P. C. Canfield, J. Y. Y. Lin, M. Lucas, M. Kresch, J. B. Keith, B. Fultz, E. A. Goremychkin, and R. J. cQueeney, Phys. Rev. Lett. , 2008, 101(15): 157004
doi: 10.1103/PhysRevLett.101.157004
13 A. S. Sefat, M. A. McGuire, B. C. Sales, R. Jin, J. Y. Howe, and D. Mandrus, Phys. Rev. B , 2008, 77(17): 174503
doi: 10.1103/PhysRevB.77.174503
14 R. H. Liu, G. Wu, T. Wu, D. F. Fang, H. Chen, S. Y. Li, K. Liu, Y. L. Xie, X. F. Wang, R. L. Yang, L. Ding, C. He, D. L. Feng, and X. H. Chen, Phys. Rev. Lett. , 2008, 101(8): 087001
doi: 10.1103/PhysRevLett.101.087001
15 K. Haule, J. H. Shim, and G. Kotliar, Phys. Rev. Lett. , 2008, 100(22): 226402
doi: 10.1103/PhysRevLett.100.226402
16 K. Haule and G. Kotliar, New J. Phys. , 2009, 11(2): 025021
doi: 10.1088/1367-2630/11/2/025021
17 A. Dubroka, K. W. Kim, M. R?ssle, V.K. alik, A. J. Drew, R. H. Liu, G. Wu, X. H. Chen, and C. Bernhard, Phys. Rev. Lett. , 2008, 101(9): 097011
doi: 10.1103/PhysRevLett.101.097011
18 A. V. Boris, N. N. Kovaleva, S. S. A. Seo, J. S. Kim, P. Popovich, Y. Matiks, R. K. Kremer, and B. Keimer, Phys. Rev. Lett. , 2008, 102(2): 027001
doi: 10.1103/PhysRevLett.102.027001
19 C. Liu, T. Kondo, M. E. Tillman, R. Gordon, G. D. Samolyuk, Y. Lee, C. Martin, J. L. McChesney, S. Bud’ko, M. A. Tanatar, E. Rotenberg, P. C. Canfield, R. Prozorov, B. N. Harmon, and A. Kaminski, arXiv:0806.2147 , 2008
20 J. Zhao, Q. Huang, C. de la Cruz, S. Li, J. W. Lynn, Y. Chen, M. A. Green, G. F. Chen, G. Li, Z. Li, J. L. Luo, N. L. Wang, and P. Dai, Nat. Mater. , 2008, 7(12): 953
doi: 10.1038/nmat2315
21 Y. Kohama, Y. Kamihara, H. Kawaji, T. Atake, M. Hirano, and H. Hosono, J. Phys. Soc. Jpn. , 2008, 77(9): 094715
doi: 10.1143/JPSJ.77.094715
22 K. Nakamura, R. Arita, and M. Imada, J. Phys. Soc. Jpn. , 2008, 77(9): 093711
doi: 10.1143/JPSJ.77.093711
23 H. Liu, W. Zhang, L. Zhao, X. Jia, J. Meng, G. Liu, X. Dong, G. F. Chen, J. L. Luo, N. L. Wang, W. Lu, G. Wang, Y. Zhou, Y. Zhu, X. Wang, Z. Zhao, Z. Xu, C. Chen, and X. J. Zho, Phys. Rev. B , 2008, 78(18): 184514
doi: 10.1103/PhysRevB.78.184514
24 H. J. Grafe, D. Paar, G. Lang, N. J. Curro, G. Behr, J. Werner, J. Hamann-Borrero, C. Hess, N. Leps, R. Klingeler, and B. Büchner, Phys. Rev. Lett. , 2008, 101(4): 047003
doi: 10.1103/PhysRevLett.101.047003
25 K. Matano, Z. A. Ren, X. L. Dong, L. L. Sun, Z. X. Zhao, and G. Q. Zheng, Europhys. Lett. , 2008, 83(5): 57001
doi: 10.1209/0295-5075/83/57001
26 A. Kawabata, S. C. Lee, T. Moyoshi, Y. Kobayashi, and M. Sato, J. Phys. Soc. Jpn. , 2008, 77(10): 103704
doi: 10.1143/JPSJ.77.103704
27 Y. Ishida, T. Shimojima, K. Ishizaka, T. Kiss, M. Okawa, T. Togashi, S. Watanabe, X. Y. Wang, C. T. Chen, Y. Kamihara, M. Hirano, H. Hosono, and S. Shin, Phys. Rev. B , 2009, 79(6): 060503
doi: 10.1103/PhysRevB.79.060503
28 T. Sato, S. Souma, K. Nakayama, K. Terashima, K. Sugawara, T. Takahashi, Y. Kamihara, M. Hirano, and H. Hosono, J. Phys. Soc. Jpn. , 2008, 77(6): 063708
doi: 10.1143/JPSJ.77.063708
29 H. Y. Liu, X. W. Jia, W. T. Zhang, L. Zhao, J. Q. Meng, G. D. Liu, X. L. Dong, G. Wu, R. H. Liu, X. H. Chen, Z. A. Ren, Y. Wei, G. C. Che, G. F. Chen, N. L. Wang, G. L. Wang, Y. Zhou, Y. Zhu, X. Y. Wang, Z. X. Zhao, Z. Y. Xu, C. T. Chen, and X. J. Zhou, Chin. Phys. Lett. , 2008, 25: 3761
doi: 10.1088/0256-307X/25/10/066
30 L. Zhao, H. Liu, W. Zhang, J. Meng, X. Jia, G. Liu, X. Dong, G. F. Chen, J. L. Luo, N. L. Wang, G. Wang, Y. Zhou, Y. Zhu, X. Wang, Z. Zhao, Z. Xu, C. Chen, and X. J. Zhou, Chin. Phys. Lett. , 2008, 25: 4402
doi: 10.1088/0256-307X/25/12/061
31 L. Shan, Y. Wang, X. Zhu, G. Mu, L. Fang, and H. H. Wen, Europhys. Lett. , 2008, 83(5): 57004
doi: 10.1209/0295-5075/83/57004
32 G. Mu, X. Zhu, L. Fang, L. Shan, C. Ren, and H. H. Wen, Chin. Phys. Lett. , 2008, 25(11): 2221
doi: 10.1088/0256-307X/25/11/052
33 C. Ren, Z. S. Wang, H. Yang, X. Zhu, L. Fang, G. Mu, L. Shan, and H. H. Wen, arXiv:0804.1726 , 2008
34 K. Ahilan, F. L. Ning, T. Imai, A. S. Sefat, R. Jin, M. A. McGuire, B. C. Sales, and D. Mandrus, Phys. Rev. B , 2008, 78(10): 100501(R)
doi: 10.1103/PhysRevB.78.100501
35 Y. Nakai, K. Ishida, Y. Kamihara, M. Hirano, and H. Hosono, J. Phys. Soc. Jpn. , 2008, 77(7): 073701
doi: 10.1143/JPSJ.77.073701
36 Y. Wang, L. Shan, L. Fang, P. Cheng, C. Ren, and H. H. Wen, Supercond. Sci. Technol. , 2009, 22(1): 015018
doi: 10.1088/0953-2048/22/1/015018
37 H. Mukuda, N. Terasaki, H. Kinouchi, M. Yashima, Y. Kitaoka, S. Suzuki, S. Miyasaka, S. Tajima, K. Miyazawa, P. M. Shirage, H. Kito, H. Eisaki, and A. Iyo, J. Phys. Soc. Jpn. , 2008, 77(9): 093704
doi: 10.1143/JPSJ.77.093704
38 O. Millo, I. Asulin, O. Yuli, I. Felner, Z. A. Ren, X. L. Shen, G. C. Che, and Z. X. Zhao, Phys. Rev. B , 2008, 78(9): 092505
doi: 10.1103/PhysRevB.78.092505
39 X. L. Wang, S. X. Dou, Z. A. Ren, W. Yi, Z. C. Li, Z. X. Zhao, and S. I. K. Lee, J. Phys.: Condens. Matter , 2009, 21(20): 205701
doi: 10.1088/0953-8984/21/20/205701
40 K. Hashimoto, T. Shibauchi, T. Kato, K. Ikada, R. Okazaki, H. Shishido, M. Ishikado, H. Kito, A. Iyo, H. Eisaki, S. Shamoto, and Y. Matsuda, Phys. Rev. Lett. , 2009, 102(1): 017002
doi: 10.1103/PhysRevLett.102.017002
41 T. Kondo, A. F. Santander-Syro, O. Copie, Chang Liu, M. E. Tillman, E. D. Mun, J. Schmalian, S. L. Bud’ko, M. A. Tanatar, P. C. Canfield, and A. Kaminski, Phys. Rev. Lett. , 2008, 101(14): 147003
doi: 10.1103/PhysRevLett.101.147003
42 H. Ding, P. Richard, K. Nakayama, T. Sugawara, T. Arakane, Y. Sekiba, A. Takayama, S. Souma, T. Sato, T. Takahashi, Z. Wang, X. Dai, Z. Fang, G. F. Chen, J. L. Luo, and N. L. Wang, Europhys. Lett. , 2008, 83(4): 47001
doi: 10.1209/0295-5075/83/47001
43 T. Y. Chen, Z. Tesanovic, R. H. Liu, X. H. Chen, and C. L. Chien, Nature , 2008, 453(7199): 1224
doi: 10.1038/nature07081
44 D. Parker, O. V. Dolgov, M. M. Korshunov, A. A. Golubov, and I. I. Mazin, Phys. Rev. B , 2008, 78(13): 134524
doi: 10.1103/PhysRevB.78.134524
45 K. Kuroki, S. Onari, R. Arita, H. Usui, Y. Tanaka, H. Kontani, and H. Aoki, Phys. Rev. Lett. , 2008, 101(8): 087004
doi: 10.1103/PhysRevLett.101.087004
46 I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Phys. Rev. Lett. , 2008, 101(5): 057003
doi: 10.1103/PhysRevLett.101.057003
47 X. Dai, Z. Fang, Y. Zhou, and F. C. Zhang, Phys. Rev. Lett. , 2008, 101(5): 057008
doi: 10.1103/PhysRevLett.101.057008
48 Q. Han, Y. Chen, and Z. D. Wang, Europhys. Lett. , 2008, 82(3): 37007
doi: 10.1209/0295-5075/82/37007
49 B. Liu and I. Eremin, Phys. Rev. B , 2008, 78(1): 014518
doi: 10.1103/PhysRevB.78.014518
50 P. Lee and X. G. Wen, Phys. Rev. B , 2008, 78(14): 144517
doi: 10.1103/PhysRevB.78.144517
51 T. Yildirim, Phys. Rev. Lett. , 2008, 101(5): 057010
doi: 10.1103/PhysRevLett.101.057010
52 Q. Si and E. Abraham, Phys. Rev. Lett. , 2008, 101: 076401
doi: 10.1103/PhysRevLett.101.076401
53 Z. J. Yao, J. X. Li, and Z. D. Wang, New J. Phys. , 2009, 11(2): 025009
doi: 10.1088/1367-2630/11/2/025009
54 C. Xu, M. Mueller, and S. Sachdev, Phys. Rev. B , 2008, 78(2): 020501 (R)
doi: 10.1103/PhysRevB.78.020501
55 E. Manousakis, J. Ren, S. Meng, and E. Kaxiras, Phys. Rev. B , 2008, 78(20): 205112
doi: 10.1103/PhysRevB.78.205112
56 S. Raghu, X. L. Qi, C. X. Liu, D. J. Scalapino, and S. C. Zhang, Phys. Rev. B , 2008, 77(22): 220503
doi: 10.1103/PhysRevB.77.220503
57 T. Li, J. Phys.: Condens. Matter , 2008, 20(42): 425203
doi: 10.1088/0953-8984/20/42/425203
58 K. Seo, B. A. Bernevig, and J. Hu, Phys. Rev. Lett. , 2008, 101(20): 206404
doi: 10.1103/PhysRevLett.101.206404
59 Y. Ran, F. Wang, H. Zhai, A. Vishwanath, and D. H. Lee, Phys. Rev. B , 2008, 79(1): 014505
doi: 10.1103/PhysRevB.79.014505
60 Y. Zhou, W. Q. Chen, and F. C. Zhang, Phys. Rev. B , 2008, 78(6): 064514
doi: 10.1103/PhysRevB.78.064514
61 J. Lorenzana, G. Seibold, C. Ortix, and M. Grilli, Phys. Rev. Lett. , 2008, 101(18): 186402
doi: 10.1103/PhysRevLett.101.186402
62 R. Sknepnek and G. Samolyuk, Phys. Rev. B , 2009, 79: 054511
doi: 10.1103/PhysRevB.79.054511
63 M. M. Parish, J. Hu, and B. A. Bernevig, Phys. Rev. B , 2008, 78(14): 144514
doi: 10.1103/PhysRevB.78.144514
64 H. Y. Choi and Y. Bang, arXiv:0807.4604 , 2008
65 S. Yang, W. L. You, S. J. Gu, and H. Q. Lin, Chin. Phys. B , 2009, 18(06): 2545
doi: 10.1088/1674-1056/18/6/071
66 M. J. Calderon, B. Valenzuela, and E. Bascones, New J. Phys. , 2009, 11(1): 013051
doi: 10.1088/1367-2630/11/1/013051
67 M. Daghofer, A. Moreo, J. A. Riera, E. Arrigoni, D. J. Scalapino, and E. Dagotto, Phys. Rev. Lett. , 2008, 101(23): 237004
doi: 10.1103/PhysRevLett.101.237004
68 Z. H. Wang, H. Tang, Z. Fang, and X. Dai, arXiv:0805.0736 , 2008
69 W. L. You, S. J. Gu, G. S. Tian, and H. Q. Lin, arXiv:0807. 1493 , 2008
70 A. Moreo, M. Daghofer, J. A. Riera, and E. Dagotto, Phys. Rev. B , 2009, 79(13): 134502
doi: 10.1103/PhysRevB.79.134502
71 For an early reference on this topic, see: E. Dagotto and A. Moreo, Phys. Rev. Lett. , 1989, 63(19): 2148
doi: 10.1103/PhysRevLett.63.2148
72 C. de la Cruz, Q. Huang, J. W. Lynn, Jiying Li, W. Ratcliff II, J. L. Zarestky, H. A. Mook, G. F. Chen, J. L. Luo, and P. Dai, Nature (London) , 2008, 453(7197): 899
doi: 10.1038/nature07057
73 R. Yu, K. T. Trinh, A. Moreo, M. Daghofer, J. A. Riera, S. Haas, and E. Dagotto, Phys. Rev. B , 2009, 79(10): 104510
doi: 10.1103/PhysRevB.79.104510
74 M. Daghofer, A. Nicholson, A. Moreo, and E. Dagotto, Phys. Rev. B , 2010, 81(1): 014511
doi: 10.1103/PhysRevB.81.014511
75 S. L. Yu, J. Kang, and J. X. Li, Phys. Rev. B , 2009, 79(6): 064517
doi: 10.1103/PhysRevB.79.064517
76 For a discussion of this relation in the manganite context, see: E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. , 2001, 344(1-3): 1, and references therein
doi: 10.1016/S0370-1573(00)00121-6
77 E. Bascones, M. J. Calder′on, and B. Valenzuela, Phys. Rev. Lett. , 2010, 104(22): 227201
doi: 10.1103/PhysRevLett.104.227201
78 T. Nomura and K. Yamada, J. Phys. Soc. Jpn. , 2000, 69(6): 1856
doi: 10.1143/JPSJ.69.1856
79 M. Daghofer, Q. L. Luo, R. Yu, D. X. Yao, A. Moreo, and E. Dagotto, Phys. Rev. B , 2010, 81(18): 180514(R)
doi: 10.1103/PhysRevB.81.180514
80 Q. L. Luo, G. B. Martins, D. X. Yao, M. Daghoffer, R. Yu, A. Moreo, and E. Dagotto, Phys. Rev. B , 2010, 82(10): 104508
doi: 10.1103/PhysRevB.82.104508
81 V. J. Emery, S. A. Kivelson, and J. M. Tranquada, Proc. Natl. Acad. Sci. USA , 1999, 96(16): 8814
doi: 10.1073/pnas.96.16.8814
82 J. Zaanen and O. Gunnarsson, Phys. Rev. B , 1989, 40(10): 7391
doi: 10.1103/PhysRevB.40.7391
83 D. Poilblanc and T. M. Rice, Phys. Rev. B , 1989, 39(13): 9749
doi: 10.1103/PhysRevB.39.9749
84 K. Machida, Physica C , 1989, 158(1-2): 192
doi: 10.1016/0921-4534(89)90316-X
85 M. Kato, K. Machida, H. Nakanishi, and M. Fujita, J. Phys. Soc. Jpn. , 19980, 59: 1047
86 T. M. Chuang, M. P. Allan, Jinho Lee, Yang Xie, Ni Ni, S. L. Budko, G. S. Boebinger, P. C. Canfield, and J. C. Davis, Science , 2010, 327(5962): 181
doi: 10.1126/science.1181083
87 Arsenic nuclear quadrupole results also indicate the presence of two charge environments in some 1111 pnictides, see: G. Lang, H. J. Grafe, D. Paar, F. Hammerath, K. Manthey, G. Behr, J. Werner, and B. Büchner, Phys. Rev. Lett. , 2010, 104(9): 097001
doi: 10.1103/PhysRevLett.104.097001
88 Q. L. Luo, D. X. Yao, A. Moreo, and E. Dagotto, Phys. Rev. B , 2011, 83(17): 174513
doi: 10.1103/PhysRevB.83.174513
89 E. Dagotto and T. M. Rice, Science , 1996, 271(5249): 618, and references therein)
doi: 10.1126/science.271.5249.618
90 A. Nicholson, W. Ge, X. Zhang, J. A. Riera, M. Daghofer, A. M. Ole′s, G. B. Martins, A. Moreo, and E. Dagotto, Phys. Rev. Lett. , 2011, 106(21): 217002
doi: 10.1103/PhysRevLett.106.217002
91 A. Moreo, M. Daghofer, A. Nicholson, and E. Dagotto, Phys. Rev. B , 2009, 80(10): 104507
doi: 10.1103/PhysRevB.80.104507
92 H. Gretarsson, A. Lupascu, J. Kim, D. Casa, T. Gog, W. Wu, S. R. Julian, Z. J. Xu, J. S. Wen, G. D. Gu, R. H. Yuan, Z. G. Chen, N. L. Wang, S. Khim, K. H. Kim, M. Ishikado, I. Jarrige, S. Shamoto, J. H. Chu, I. R. Fisher, and Y. J. Kim, arXiv:1107.2211 , 2011
93 F. Bondino, E. Magnano, M. Malvestuto, F. Parmigiani, M. A. McGuire, A. S. Sefat, B. C. Sales, R. Jin, D. Mandrus, E. W. Plummer, D. J. Singh, and N. Mannella, Phys. Rev. Lett. , 2008, 101(26): 267001
doi: 10.1103/PhysRevLett.101.267001
94 A. Nicholson, Q. L. Luo, W. Ge, J. A. Riera, M. Daghofer, G. B. Martins, A. Moreo, and E. Dagotto, Phys. Rev. B , 2011, 84(9): 094519
doi: 10.1103/PhysRevB.84.094519
95 J. Guo, S. Jin, G. Wang, S. Wang, K. Zhu, T. Zhou, M. He, and X. Chen, Phys. Rev. B , 2010, 82(18): 180520(R)
doi: 10.1103/PhysRevB.82.180520
96 M.H. Fang, H. D. Wang, C.H. Dong, Z. J. Li, C.M. Feng, J. Chen, and H. Q. Yuan, Europhys. Lett. , 2011, 94(2): 27009
doi: 10.1209/0295-5075/94/27009
97 W. Bao, Q. Huang, G. F. Chen, M. A. Green, D. M. Wang, J. B. He, X. Q. Wang, and Y. Qui, Chin. Phys. Lett. , 2011, 28(8): 086104
doi: 10.1088/0256-307X/28/8/086104
98 This magnetic state may coexist with a non-magnetic one in a nanoscale phase separated arrangement, see: A. Ricci, N. Poccia, G. Campi, B. Joseph, G. Arrighetti, L. Barba, M. Reynolds, M. Burghammer, H. Takeya, Y. Mizuguchi, Y. Takano, M. Colapietro, N. L. Saini, and A. Bianconi, Phys. Rev. B , 2011, 84(6): 060511(R)
doi: 10.1103/PhysRevB.84.060511
99 X. P. Wang, T. Qian, P. Richard, P. Zhang, J. Dong, H. D. Wang, C. H. Dong, M. H. Fang, and H. Ding, Europhys. Lett. , 2011, 93(5): 57001
doi: 10.1209/0295-5075/93/57001
100 K. Wang, H. Lei, and C. Petrovic, Phys. Rev. B , 2011, 83(17): 174503, and references therein
doi: 10.1103/PhysRevB.83.174503
101 C. Cao and J. Dai, Phys. Rev. Lett. , 2011, 107(5): 056401
doi: 10.1103/PhysRevLett.107.056401
102 C. Cao and J. Dai, Phys. Rev. B , 2011, 83(19): 193104
doi: 10.1103/PhysRevB.83.193104
103 R. Yu, P. Goswami, and Q. Si, arXiv:1104.1445 , 2011
104 W. G. Yin, C. H. Lin, and W. Ku, arXiv:1106.0881 , 2011
105 A related study also using a spin model can be found in: C. Fang, B. Xu, P. Dai, T. Xiang, and J. Hu, arXiv:1103.4599 , 2011
106 W. Lv, W. C. Lee, and P. W. Phillips, arXiv:1105.0432 , 2011
107 Q. L. Luo, A. Nicholson, J. A. Riera, D. X. Yao, A. Moreo, and E. Dagotto, Phys. Rev. B , 2011, 84(14): 140506(R)
doi: 10.1103/PhysRevB.84.140506
108 J. H. Chu, J. G. Analytis, K. De Greve, P. L. McMahon, Z. Islam, Y. Yamamoto, and I. R. Fisher, Science , 2010, 329(5993): 824
doi: 10.1126/science.1190482
109 E. C. Blomberg, M. A. Tanatar, A. Kreyssig, N. Ni, A. Thaler, Rongwei Hu, S. L. Bud’ko, P. C. Canfield, A. I. Goldman, and R. Prozorov, Phys. Rev. B , 2011, 83: 134505, and references therein
doi: 10.1103/PhysRevB.83.134505
110 A. Dusza, A. Lucarelli, A. Sanna, S. Massidda, J. H. Chu, I. R. Fisher, and L. Degiorgi, arXiv:1107.0670 , 2011
111 B. Valenzuela, E. Bascones, and M. J. Calder′on, Phys. Rev. Lett. , 2010, 105(20): 207202
doi: 10.1103/PhysRevLett.105.207202
112 K. Sugimoto, E. Kaneshita, and T. Tohyama, J. Phys. Soc. Jpn. , 2011, 80(3): 033706, and references therein
doi: 10.1143/JPSJ.80.033706
113 X. T. Zhang and E. Dagotto, Phys. Rev. B , 2011, 84(13): 132505, and references therein
doi: 10.1103/PhysRevB.84.132505
[1] Mike Guidry, Yang Sun, Lian-Ao Wu, Cheng-Li Wu. Fermion dynamical symmetry and strongly-correlated electrons: A comprehensive model of high-temperature superconductivity[J]. Front. Phys. , 2020, 15(4): 43301-.
[2] Xue-Hui Xiao, De-Fang Duan, Yan-Bin Ma, Hui Xie, Hao Song, Da Li, Fu-Bo Tian, Bing-Bing Liu, Hong-Yu Yu, Tian Cui. Ab initio studies of copper hydrides under high pressure[J]. Front. Phys. , 2019, 14(4): 43601-.
[3] Dong-Dong Wang, Bin Liu, Min Liu, Yi-Feng Yang, Shi-Ping Feng. Impurity-induced bound states as a signature of pairing symmetry in multiband superconducting CeCu2Si2[J]. Front. Phys. , 2019, 14(1): 13501-.
[4] Shengshan Qin, Yinxiang Li, Qiang Zhang, Congcong Le, Jiangping Hu. Theoretical studies of superconductivity in doped BaCoSO[J]. Front. Phys. , 2018, 13(3): 137502-.
[5] Ryszard Gonczarek, Mateusz Krzyzosiak, Adam Gonczarek, Lucjan Jacak. Analytical assessment of some characteristic ratios for s-wave superconductors[J]. Front. Phys. , 2018, 13(2): 137403-.
[6] R. Szcze¸śniak, A. P. Durajski, M. W. Jarosik. Strong-coupling superconductivity induced by calcium intercalation in bilayer transition-metal dichalcogenides[J]. Front. Phys. , 2018, 13(2): 137401-.
[7] Qian Chen,Xiaohui Yang,Xiaojun Yang,Jian Chen,Chenyi Shen,Pan Zhang,Yupeng Li,Qian Tao,Zhu-An Xu. Enhanced superconductivity in hole-doped Nb2PdS5[J]. Front. Phys. , 2017, 12(5): 127402-.
[8] Mateusz Krzyzosiak, Ryszard Gonczarek, Adam Gonczarek, Lucjan Jacak. Applications of the conformal transformation method in studies of composed superconducting systems[J]. Front. Phys. , 2016, 11(6): 117407-.
[9] Jiangping Hu,Jing Yuan. Robustness of s-wave pairing symmetry in iron-based superconductors and its implications for fundamentals of magnetically driven high-temperature superconductivity[J]. Front. Phys. , 2016, 11(5): 117404-.
[10] Mike Guidry, Yang Sun. Superconductivity and superfluidity as universal emergent phenomena[J]. Front. Phys. , 2015, 10(4): 107404-.
[11] Wang Rui-Feng(王瑞峰). A possible interplay between electron beams and magnetic fluxes in the Aharonov–Bohm effect[J]. Front. Phys. , 2015, 10(3): 100305-.
[12] Dingping Li, Baruch Rosenstein, B. Ya. Shapiro, I. Shapiro. Chiral universality class of normal-superconducting and exciton condensation transitions on surface of topological insulator[J]. Front. Phys. , 2015, 10(3): 107402-.
[13] Qijin Chen, Jibiao Wang. Pseudogap phenomena in ultracold atomic Fermi gases[J]. Front. Phys. , 2014, 9(5): 539-570.
[14] Jiajun Ouyang, W. LiMing, Liangbin Hu. Andreev reflection and tunneling spectrum on metal–superconductor–metal junctions[J]. Front. Phys. , 2012, 7(4): 449-452.
[15] Han-Yong Choi, Chandra M. Varma, Xing-jiang Zhou. Superconductivity in the cuprates: Deduction of mechanism for d-wave pairing through analysis of ARPES[J]. Front. Phys. , 2011, 6(4): 440-449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed