Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2011, Vol. 6 Issue (4) : 410-428    https://doi.org/10.1007/s11467-011-0229-5
REVIEW ARTICLE
Structural, magnetic and electronic properties of the iron–chalcogenide AxFe2-ySe2 (A=K, Cs, Rb, and Tl, etc.) superconductors
Dai-xiang Mou, Lin Zhao, Xing-jiang Zhou()
National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
 Download: PDF(1863 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The latest discovery of a new iron–chalcogenide superconductor AxFe2-ySe2 (A = K, Cs, Rb, and Tl, etc.) has attracted much attention due to a number of its unique characteristics, such as the possible insulating state of the parent compound, the existence of Fe-vacancy and its ordering, a new form of magnetic structure and its interplay with superconductivity, and the peculiar electronic structures that are distinct from other Fe-based superconductors. In this paper, we present a brief review on the structural, magnetic and electronic properties of this new superconductor, with an emphasis on the electronic structure and superconducting gap. Issues and future perspectives are discussed at the end of the paper.

Keywords superconductor      iron–chalcogenides      electronic structure      photoemission      Fermi science      superconducting gap      crystal structure      magnetic structure     
Corresponding Author(s): Zhou Xing-jiang,Email:XJZhou@aphy.iphy.ac.cn   
Issue Date: 05 December 2011
 Cite this article:   
Dai-xiang Mou,Lin Zhao,Xing-jiang Zhou. Structural, magnetic and electronic properties of the iron–chalcogenide AxFe2-ySe2 (A=K, Cs, Rb, and Tl, etc.) superconductors[J]. Front. Phys. , 2011, 6(4): 410-428.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-011-0229-5
https://academic.hep.com.cn/fop/EN/Y2011/V6/I4/410
1 Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. , 2008, 130(11): 3296
2 X. H. Chen, T. Wu, G. Wu, R. H. Liu, H. Chen, and D. F. Fang, Nature , 2008, 453(7196): 761
3 G. F. Chen, Z. Li, D. Wu, G. Li, W. Z. Hu, J. Dong, P. Zheng, J. L. Luo, and N. L. Wang, Phys. Rev. Lett. , 2008, 100(24): 247002
4 Z. A. Ren, W. Lu, J. Yang, W. Yi, X. L. Shen, Z. C. Li, G. C. Chen, X. L. Dong, L. L. Sun, F. Zhou, and Z. X. Zhao, Chin. Phys. Lett. , 2008, 25(7): 2215
5 C. Wang, L. Li, S. Chi, Z. Zhu, Z. Ren, Y. Li, Y. Wang, X. Lin, Y. Luo, S. Jiang, X. Xu, G. Cao, and Z. Xu, Europhys. Lett. , 2008, 83(6): 67006
6 J. G. Bednorz and K. A. Müller, Z. Phys. B , 1986, 64(2): 189
7 M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett. , 2008, 101(10): 107006
8 X. C. Wang, Q. Liu, Y. Lv, W. Gao, L. Yang, R. Yu, F. Li, and C. Q. Jin, Solid State Commun. , 2008, 148(11-12): 538
9 F. C. Hsu, J. Y. Luo, K. W. Yeh, T. K. Chen, T. W. Huang, P. M. Wu, Y. C. Lee, Y. L. Huang, Y. Y. Chu, D. C. Yan, and M. K. Wu, Proc. Natl. Acad. Sci. USA , 2008, 105(38): 14262
10 K. Ishida, Y. Nakai, and H. Hosono, J. Phys. Soc. Jpn. , 2009, 78(6): 062001
11 J. Paglione and R. L. Greene, Nat. Phys. , 2010, 6(9): 645
12 D. C. Johnston, Adv. Phys. , 2010, 59(6): 803
13 F. Wang and D. H. Lee, Science , 2011, 332(6026): 200
14 A. S. Sefat, R. Jin, M. A. McGuire, B. C. Sales, D. J. Singh, and D. Mandrus, Phys. Rev. Lett. , 2008, 101(11): 117004
15 C. Wang, Y. K. Li, Z. W. Zhu, S. Jiang, X. Lin, Y. K. Luo, S. Chi, L. J. Li, Z. Ren, M. He, H. Chen, Y. T. Wang, Q. Tao, G. H. Cao, and Z. A. Xu, Phys. Rev. B , 2009, 79(5): 054521
16 P. A. Lee, N. Nagaosa, and X. G. Wen, Rev. Mod. Phys. , 2006, 78(1): 17
17 D. J. Singh and M. H. Du, Phys. Rev. Lett. , 2008, 100(23): 237003
18 K. Kuroki, S. Onari, R. Arita, H. Usui, Y. Tanaka, H. Kontani, and H. Aoki, Phys. Rev. Lett. , 2008, 101(8): 087004
19 F. J. Ma, Z. Y. Lu, and T. Xiang, Front. Phys. China , 2010, 5(2): 147
20 X. J. Zhou, G. D. Liu, H. Y. Liu, L. Zhao, W. T. Zhang, X. W. Jia, and J. Q. Meng, Front. Phys. China , 2009, 4(4): 427
21 I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Phys. Rev. Lett. , 2008, 101(5): 057003
22 F. Wang, H. Zhai, Y. Ran, A. Vishwanath, and D. H. Lee, Phys. Rev. Lett. , 2009, 102(4): 047005
23 A. V. Chubukov, D. V. Efremov, and I. Eremin, Phys. Rev. B , 2008, 78(13): 134512
24 V. Stanev, J. Kang, and Z. Tesanovic, Phys. Rev. B , 2008, 78(18): 184509
25 F. Wang, H. Zhai, and D. H. Lee, Europhys. Lett. , 2009, 85(3): 37005
26 I. I. Mazin and M. D. Johannes, Nat. Phys. , 2009, 5(2): 141
27 Q. M. Si and E. Abrahams, Phys. Rev. Lett. , 2008, 101(7): 076401
28 T. Yildirim, Phys. Rev. Lett. , 2008, 101(5): 057010
29 J. S. Wu, P. Phillips, and A. H. Castro Neto, Phys. Rev. Lett. , 2008, 101(12): 126401
30 C. Fang, H. Yao, W. F. Tsai, J. P. Hu, and S. A. Kivelson, Phys. Rev. B , 2008, 77(22): 224509
31 C. K. Xu, M. Mueller, and S. Sachdev, Phys. Rev. B 78, 020501(R) (2008).
32 H. Kontani and S. Onari, Phys. Rev. Lett. , 2010, 104(15): 157001
33 T. Saito, S. Onari, and H. Kontani, Phys. Rev. B , 2010, 82(14): 144510
34 L. Zhao, H. Y. Liu, W. T. Zhang, J. Q. Meng, X. W. Jia, G. D. Liu, X. L. Dong, G. F. Chen, J. L. Luo, N. L. Wang, G. L. Wang, Y. Zhou, Y. Zhu, X. Y. Wang, Z. X. Zhao, Z. Y. Xu, C. T. Chen, and X. J. Zhou, Chin. Phys. Lett. , 2008, 25: 4402
35 H. Ding, P. Richard, K. Nakayama, K. Sugawara, T. Arakane, Y. Sekiba, A. Takayama, S. Souma, T. Sato, T. Takahashi, Z. Wang, X. Dai, Z. Fang, G. F. Chen, J. L. Luo, and N. L. Wang, Europhys. Lett. , 2008, 83(4): 47001
36 A. D. Christianson, E. A. Goremychkin, R. Osborn, S. Rosenkranz, M. D. Lumsden, C. D. Malliakas, I. S. Todorov, H. Claus, D. Y. Chung, M. G. Kanatzidis, R. I. Bewley, and T. Guidi, Nature , 2008, 456: 930
37 T. Hanaguri, S. Niitaka, K. Kuroki, and H. Takagi, Science , 2010, 328(5977): 474
38 J. G. Guo, S. F. Jin, G. Wang, S. C. Wang, K. X. Zhu, T. T. Zhou, M. He, and X. L. Chen, Phys. Rev. B , 2010, 82(18): 180520(R)
39 A. Krzton-Maziopa, Z. Shermadini, E. Pomjakushina, V. Pomjakushin, M. Bendele, A. Amato, R. Khasanov, H. Luetkens, and K. Conder, J. Phys.: Condens. Matter , 2011, 23(5): 052203
40 C. H. Li, B. Shen, F. Han, X. Zhu, and H. H. Wen, Phys. Rev. B , 2011, 83(18): 184521
41 M.H. Fang, H. D. Wang, C.H. Dong, Z. J. Li, C.M. Feng, J. Chen, and H. Q. Yuan, Europhys. Lett. , 2011, 94(2): 27009
42 H. D. Wang, C. H. Dong, Z. J. Li, Q. H. Mao, S. S. Zhu, C. M. Feng, H. Q. Yuan, and M. H. Fang, Europhys. Lett. , 2011, 93(4): 47004
43 I. I. Mazin, Physics , 2011, 4: 26
44 W. Bao, Q. Z. Huang, G. F. Chen, D. M. Wang, J. B. He, and Y. M. Qiu, Chin. Phys. Lett. , 2011, 28(8): 086104
45 M. Wang, M. Wang, G. Li, Q. Huang, C. Li, G. Tan, C. Zhang, H. Cao, W. Tian, Y. Zhao, Y. Chen, X. Lu, B. Sheng, H. Luo, S. Li, M. Fang, J. Zarestky, W. Ratcliff, M. Lumsden, J. Lynn, and P. Dai, Phys. Rev. B , 2011, 84(9): 094504
46 T. Qian, X. P. Wang, W. C. Jin, P. Zhang, P. Richard, G. Xu, X. Dai, Z. Fang, J. G. Guo, X. L. Chen, and H. Ding, Phys. Rev. Lett. , 2011, 106(18): 187001
47 Y. Zhang, L. X. Yang, M. Xu, Z. R. Ye, F. Chen, C. He, H. C. Xu, J. Jiang, B. P. Xie, J. J. Ying, X. F. Wang, X. H. Chen, J. P. Hu, M. Matsunami, S. Kimura, and D. L. Feng, Nat. Mater. , 2011, 10(4): 273
48 D. Mou, S. Liu, X. Jia, J. He, Y. Peng, L. Zhao, L. Yu, G. Liu, S. He, X. Dong, J. Zhang, H. Wang, C. Dong, M. Fang, X. Wang, Q. Peng, Z. Wang, S. Zhang, F. Yang, Z. Xu, C. Chen, and X. J. Zhou, Phys. Rev. Lett. , 2011, 106(10): 107001
49 L. Zhao, D. X. Mou, S. Y. Liu, X. W. Jia, J. F. He, Y. Y. Peng, L.Yu, X. Liu, G. D. Liu, S. L. He, X. L. Dong, J. Zhang, J. B. He, D. M. Wang, G. F. Chen, J. G. Guo, X. L. Chen, X. Y. Wang, Q. J. Peng, Z. M. Wang, S. J. Zhang, F. Yang, Z. Y. Xu, C. T. Chen, and X. J. Zhou, Phys. Rev. B , 2011, 83(14): 140508(R)
50 X. Wang, T. Qian, P. Richard, P. Zhang, J. Dong, H. D. Wang, C. H. Dong, M. H. Fang, and H. Ding, Europhys. Lett. , 2011, 93(5): 57001
51 A. L. Ivanovskii, Physica C , 2011, 471(13-14): 409
52 L. H?ggstr?m, H. R. Verma, S. Bjarman, R. W?ppling, and R. Berger, J. Solid State Chem. , 1986, 63(3): 401
53 H. Sabrowsky, M. Rosenberg, D. Welz, P. Deppe, and W. Schafer, J. Magn. Magn. Mater. , 1986, 54-57: 1497
54 L. H?ggstr?m, A. Seidel, and Rolf Berger, J. Magn. Magn. Mater. , 1991, 98(1-2): 37
55 D. M. Wang, J. He, T. L. Xia, and G. Chen, Phys. Rev. B , 2011, 83(13): 132502
56 L. L. Sun, X. J. Chen, J. Guo, P. W. Gao, H. D. Wang, M. H. Fang, X. L. Chen, G. F. Chen, Q. Wu, C. Zhang, D. C. Gu, X. L. Dong, K. Yang, A. G. Li, X. Dai, H. K. Mao and Z. X. Zhao, arXiv:1110.2600 , 2011
57 V. Tsurkan, J. Deisenhofer, A. Günther, H. A. Krug von Nidda, S. Widmann, and A. Loidl, arXiv:1107.3932 , 2011
58 Y. J. Yan, M. Zhang, A. F. Wang, J. J. Ying, Z. Y. Li, W. Qin, X. G. Luo, J. Q. Li, J. P. Hu, and X. H. Chen, arXiv:1104.4941 , 2011
59 R. H. Liu, X. G. Luo, M. Zhang, A. F. Wang, J. J. Ying, X. F. Wang, Y. J. Yan, Z. J. Xiang, P. Cheng, G. J. Ye, Z. Y. Li, and X. H. Chen, Europhys. Lett. , 2011, 94(2): 27008
60 J. Guo, X. J. Chen, C. Zhang, J. G. Guo, X. L. Chen, Q. Wu, D. C. Gu, P. W. Gao, X. Dai, L. H. Yang, H. K. Mao, L. L. Sun, and Z. X. Zhao, arXiv:1101.0092 , 2011
61 Y. Kawasaki, Y. Mizuguchi, K. Deguchi, T. Watanabe, T. Ozaki, S. Tsuda, T. Yamaguchi, H. Takeya, and Y. Takano, arXiv:1101.0896 , 2011
62 J. J. Ying, X. F. Wang, X. G. Luo, Z. Y. Li, Y. J. Yan, M. Zhang, A. F. Wang, P. Cheng, G. J. Ye, Z. J. Xiang, R. H. Liu, and X. H. Chen, New J. Phys. , 2011, 13(3): 033008
63 G. Seyfarth, D. Jaccard, P. Pedrazzini, A. Krzton-Maziopa, E. Pomjakushina, K. Conder, and Z. Shermadini, arXiv:1102.2464 , 2011
64 H. Lei, M. Abeykoon, E. S. Bozin, K. Wang, J. B. Warren, and C. Petrovic, Phys. Rev. Lett. , 2011, 107(13): 137002
65 X. G. Luo, X. F. Wang, J. J. Ying, Y. J. Yan, Z. Y. Li, M. Zhang, A. F. Wang, P. Cheng, Z. J. Xiang, G. J. Ye, R. H. Liu, and X. H. Chen, arXiv:1101.5670 , 2011
66 W. Bao, G. N. Li, Q. Huang, G. F. Chen, J. B. He, M. A. Green, Y. Qiu, D. M. Wang, and J. L. Luo, arXiv:1102.3674 , 2011
67 Z. Wang, Y. J. Song, H. L. Shi, Z. W. Wang, Z. Chen, H. F. Tian, G. F. Chen, J. G. Guo, H. X. Yang, and J. Q. Li, Phys. Rev. B , 2011, 83(14): 140505(R)
68 J. Q. Li, Y. J. Song, H. X. Yang, Z. Wang, H. L. Shi, G. F. Chen, Z. W. Wang, Z. Chen, and H. F. Tian, arXiv:1104.5340 , 2011
69 Y. J. Song, Z. Wang, Z. W. Wang, H. L. Shi, Z. Chen, H. F. Tian, G. F. Chen, H. X. Yang, and J. Q. Li, Europhys. Lett. , 2011, 95(3): 37007
70 S. M. Kazakov, A. M. Abakumov, S. Gonz′alez, J. M. Perez-Mato, A. V. Ovchinnikov, M. V. Roslova, A. I. Boltalin, I. V. Morozov, E. V. Antipov, and G. van Tendeloo, arXiv:1110.0598 , 2011
71 F. Ye, S. Chi, W. Bao, X. F. Wang, J. J. Ying, X. H. Chen, H. D. Wang, C. H. Dong, and M. Fang, Phys. Rev. Lett. , 2011, 107(13): 137003
72 V. Yu. Pomjakushin, E. V. Pomjakushina, A. Krzton-Maziopa, K. Conder, and Z. Shermadini, J. Phys.: Condens. Matter , 2011, 23(15): 156003
73 V. Yu. Pomjakushin, D. V. Sheptyakov, E. Pomjakushina, A. Krzton-Maziopa, K. Conder, D. Chernyshov, V. Svitlyk, and Z. Shermadini, Phys. Rev. B , 2011, 83(14): 144410
74 P. Zavalij, W. Bao, X. Wang, J. Ying, X. Chen, D. Wang, J. He, X. Wang, G. Chen, P.Y. Hsieh, Q. Huang, and M. Green, Phys. Rev. B , 2011, 83(13): 132509
75 J. Bacsa, A. Y. Ganin, Y. Takabayashi, K. E. Christensen, K. Prassides, M. J. Rosseinsky, and J. B. Claridge, Chem. Sci. , 2011, 2(6): 1054
76 W. Li, H. Ding, P. Deng, K. Chang, C. L. Song, K. He, L. L. Wang, X. C. Ma, J. P. Hu, X. Chen, and Q. K. Xue, arXiv:1108.0069 , 2011
77 P. Cai, C. Ye, W. Ruan, X. D. Zhou, A. F. Wang, M. Zhang, X. H. Chen, and Y. Y. Wang, arXiv:1108.2798 , 2011
78 H. Lei and C. Petrovic, Phys. Rev. B , 2011, 83(18): 184504
79 A. Ricci, N. Poccia, B. Joseph, G. Arrighetti, L. Barba, J. Plaisier, G. Campi, Y. Mizuguchi, H. Takeya, Y. Takano, N. L. Saini, and A. Bianconi, Supercond. Sci. Technol. , 2011, 24(8): 082002
80 A. Ricci, N. Poccia, G. Campi, B. Joseph, G. Arrighetti, L. Barba, M. Reynolds, M. Burghammer, H. Takeya, Y. Mizuguchi, Y. Takano, M. Colapietro, N. L. Saini, and A. Bianconi, Phys. Rev. B , 2011, 84: 060511(R)
81 C. de la Cruz, Q. Huang, J. W. Lynn, J. Li, J. L. Ratcliff, H. A. Zarestky, G. F. Mook, J. L. Chen, N. L. Luo, Wang, and P. Dai, Nature , 2008, 453(7197): 899
82 Q. Huang, Y. Qiu, W. Bao, M. A. Green, J. W. Lynn, Y. C. Gasparovic, T. Wu, G. Wu, and X. H. Chen, Phys. Rev. Lett. , 2008, 101(25): 257003
83 S. L. Li, C. de la Cruz, Q. Huang, G. F. Chen, T. L. Xia, J. L. Luo, N. L. Wang, and P. Dai, Phys. Rev. B , 2009, 80(2): 020504(R)
84 W. Bao, Y. Qiu, Q. Huang, M. A. Green, P. Zajdel, M. R. Fitzsimmons, M. Zhernenkov, S. Chang, M. Fang, B. Qian, E. K. Vehstedt, J. Yang, H. M. Pham, L. Spinu, and Z. Q. Mao, Phys. Rev. Lett. , 2009, 102(24): 247001
85 M. D. Lumsden and A. D. Christianson, J. Phys.: Condens. Matter , 2010, 22(20): 203203
86 X. Y. Yan, M. Gao, Z. Y. Lu, and T. Xiang, Phys. Rev. B , 2011, 84(5): 054502
87 C. Cao and J. Dai, Phys. Rev. Lett. , 2011, 107(5): 056401
88 X. Y. Yan, M. Gao, Z.Y. Lu, and T. Xiang, Phys. Rev. B , 2011, 83(23): 233205
89 R. Yu, P. Goswami, and Q. Si, Phys. Rev. B , 2011, 84(9): 094451
90 W. C. Lv, W. C. Lee, and P. Phillips, arXiv:1105.0432 , 2011
91 X. W. Yan, M. Gao, Z. Y. Lu, and T. Xiang, Phys. Rev. Lett. , 2011, 106(8): 087005
92 Z. Shermadini, A. Krzton-Maziopa, M. Bendele, R. Khasanov, H. Luetkens, K. Conder, E. Pomjakushina, S. Weyeneth, V. Pomjakushin, O. Bossen, and A. Amato, Phys. Rev. Lett. , 2011, 106(11): 117602
93 D. H. Ryan, W. Rowan-Weetaluktuk, J. Cadogan, R. Hu, W. Straszheim, S. Bud’ko, and P. Canfield, Phys. Rev. B , 2011, 83(10): 104526
94 A. M. Zhang, J. H. Xiao, Y. S. Li, J. B. He, D. M. Wang, G. F. Chen, B. Normand, Q. M. Zhang, and T. Xiang, arxiv:1106.2706 , 2011
95 V. Ksenofontov, G. Wortmann, S. Medvedev, V. Tsurkan, J. Deisenhofer, A. Loidl, and C. Felser, arXiv:1108.3006 , 2011
96 W. Li, S. Dong, C. Fang, and J. P. Hu, arXiv:1110.0372 , 2011
97 M. Y. Wang, C. Fang, D. X. Yao, G. T. Tan, L. W. Harriger, Y. Song, T. Netherton, C. L. Zhang, M. Wang, M. B. Stone, W. Tian, J. P. Hu, and P. Dai, arXiv:1105.4675 , 2011
98 Y. Z. You, H. Yao, and D. H. Lee, Phys. Rev. B , 2011, 84(2): 020406(R)
99 O. J. Lipscombe, G. F. Chen, C. Fang, T. G. Perring, D. L. Abernathy, A. D. Christianson, T. Egami, N. Wang, J. Hu, and P. Dai, Phys. Rev. Lett. , 2011, 106(5): 057004
100 J. Zhao, D. T. Adroja, D.X. Yao, R. Bewley, S. Li, X. F. Wang, G. Wu, X. H. Chen, J. Hu, and P. Dai, Nat. Phys. , 2009, 5(8): 555
101 J. P. Hu, B. Xu, W. M. Liu, N. N. Hao, and Y. P. Wang, arXiv:1106.5169 , 2011
102 P. Monthoux and D. J. Scalapino, Phys. Rev. Lett. , 1994, 72(12): 1874
103 J. Rossat-Mignod, L. P. Regnault, C. Vettier, P. Bourges, P. Burlet, J. Bossy, J. Y. Henry, and G. Lapertot, Physica C , 1991, 185-189: 86
104 H. A. Mook, M. Yethiraj, G. Aeppli, T. E. Mason, and T. Armstrong, Phys. Rev. Lett. , 1993, 70(22): 3490
105 H. F. Fong, P. Bourges, Y. Sidis, L. P. Regnault, A. Ivanov, G. D. Gu, N. Koshizuka, and B. Keimer, Nature , 1999, 398: 588
106 M. Eschrig, Adv. Phys. , 2006, 55(1-2): 47
107 N. K. Sato, N. Aso, K. Miyake, R. Shiina, P. Thalmeier, G. Varelogiannis, C. Geibel, F. Steglich, P. Fulde, and T. Komatsubara, Nature , 2001, 410(6826): 340
108 C. Stock, C. Broholm, J. Hudis, H. Kang, and C. Petrovic, Phys. Rev. Lett. , 2008, 100(8): 87001
109 J. T. Park, G. Friemel, Yuan Li, J. H. Kim, V. Tsurkan, J. Deisenhofer, H. A. Krug von Nidda, A. Loidl, A. Ivanov, B. Keimer, and D. S. Inosov, arXiv:1107.1703 , 2011
110 T. A. Maier, S. Graser, P. J. Hirschfeld, and D. J. Scalapino, Phys. Rev. B , 2011, 83(10): 100515(R)
111 T. Das and A. Balatsky, Phys. Rev. B , 2011, 84(1): 014521
112 D. S. Inosov, J. Park, A. Charnukha, Y. Li, A. Boris, B. Keimer, and V. Hinkov, Phys. Rev. B , 2011, 83(21): 214520
113 G. Yu, Y. Li, E. M. Motoyama, and M. Greven, Nat. Phys. , 2009, 5(12): 873
114 T. Imai, K. Ahilan, F. L. Ning, T. M. McQueen, and R. J. Cava, Phys. Rev. Lett. , 2009, 102(17): 177005
115 F. L. Ning, K. Ahilan, T. Imai, A. S. Sefat, M. A. McGuire, B. C. Sales, D. Mandrus, P. Cheng, B. Shen, and H. H. Wen, Phys. Rev. Lett. , 2010, 104(3): 037001
116 W. Yu, L. Ma, J. B. He, D. M. Wang, T. L. Xia, G. F. Chen, and W. Bao, Phys. Rev. Lett. , 2011, 106(19): 197001
117 D. A. Torchetti, M. Fu, D. Christensen, K. Nelson, T. Imai, H. Lei, and C. Petrovic, Phys. Rev. B , 2011, 83(10): 104508
118 H. Kotegawa, Y. Hara, H. Nohara, H. Tou, Y. Mizuguchi, H. Takeya, and Y. Takano, J. Phys. Soc. Jpn. , 2011, 80(4): 043708
119 L. Ma, G. Ji, J. Zhang, J. He, D. Wang, G. Chen, W. Bao, and W. Yu, Phys. Rev. B , 2011, 83(17): 174510
120 I. R. Shein and A. L. Ivanovskii, Phys. Lett. A , 2011, 375(6): 1028
121 C. Cao and J. H. Dai, Chin. Phys. Lett. , 2011, 28(5): 057402
122 I. A. Nekrasov and M. V. Sadovskii, JETP Lett. , 2011, 93(3): 166
123 C. Cao and J. Dai, Phys. Rev. B , 2011, 83(19): 193104
124 R. Yu, J. X. Zhu, and Q. Si, Phys. Rev. Lett. , 2011, 106(18): 186401
125 Y. Zhou, D. H. Xu, F. C. Zhang, and W. Q. Chen, Europhys. Lett. , 2011, 95(1): 17003
126 L. Craco, M. S. Laad, and S. Leoni, arXiv:1109.0116 , 2011
127 F. Chen, M. Xu, Q. Q. Ge, Y. Zhang, Z. R. Ye, L. X. Yang, Juan Jiang, B. P. Xie, R. C. Che, M. Zhang, A. F. Wang, X. H. Chen, D. W. Shen, X. M. Xie, M. H. Jiang, J. P. Hu, and D. L. Feng, arXiv:1106.3026 , 2011
128 D. Mou, X. J. Zhou, , unpublished data
129 H. Y. Liu, G. F. Chen, W. Zhang, L. Zhao, G. Liu, T. L. Xia, X. Jia, D. Mu, S. Liu, S. He, Y. Peng, J. He, Z. Chen, X. Dong, J. Zhang, G. Wang, Y. Zhu, Z. Xu, C. Chen, and X. J. Zhou, Phys. Rev. Lett. , 2010, 105(2): 027001
130 Y. Xia, D. Qian, L. Wray, D. Hsieh, G. F. Chen, J. L. Luo, N. L. Wang, and M. Z. Hasan, Phys. Rev. Lett. , 2009, 103(3): 037002
131 The superconducting gap size listed in Table 4 was obtained in ARPES by either fitting the symmetrized EDCs using the phenonolological formula as proposed in: M. R. Norman et al., Phys. Rev. B, 1998, 57: R11093, or picking up the peak position. We found that, when the signal is weak and the selected energy window is large to cover the overall peak, the gap value from the fitting procedure tends to be (2~3) meV larger than that obtained directly from the peak position [48]. The gap size difference in Table IV needs to take into account such different ways of determining the gap size.
132 B. Zeng, B. Shen, G. F. Chen, J. B. He, D. M. Wang, C. H. Li, and H. H. Wen, Phys. Rev. B , 2011, 83(14): 144511
133 F. Wang, F. Yang, M. Gao, Z. Y. Lu, T. Xiang, and D. H. Lee, Europhys. Lett. , 2011, 93(5): 57003
134 R. Yu, P. Goswami, Q. Si, P. Nikolic, and J. X. Zhu, arXiv:1103.3259 , 2011
135 C. Fang, Y. L. Wu, R. Thomale, B. Bernevig, and J. P. Hu, Phys. Rev. X , 2011, 1(1): 011009
136 T. Saito, S. Onari, and H. Kontani, Phys. Rev. B , 2011, 83(14): 140512(R)
137 I. I. Mazin, arXiv:1102.3655 , 2011
138 A. Damascelli, Z. Hussain, and Z. X. Shen, Rev. Mod. Phys. , 2006, 75(2): 473
139 X. J. Zhou, , Handbook of High-Temperature Superconductivity: Theory and Experiment, edited by J. R. Schrieffer, Springer , 2007: 87-144
140 A. M. Zhang, K. Liu, J. H. Xiao, J. B. He, D. M. Wang, G. F. Chen, B. Normand, and Q. M. Zhang, arxiv:1101.2168 , 2011
141 A. M. Zhang, K. Liu, J. H. Xiao, J. B. He, D. M. Wang, G. F. Chen, B. Normand, and Q. M. Zhang, arxiv:1105.1198 , 2011
142 Z. G. Chen, R. H. Yuan, T. Dong, G. Xu, Y. G. Shi, P. Zheng, J. L. Luo, J. G. Guo, X. L. Chen, and N. L. Wang, Phys. Rev. B , 2011, 83(22): 220507(R)
[1] Wen Tong, Qun Wei, Hai-Yan Yan, Mei-Guang Zhang, Xuan-Min Zhu. Accelerating inverse crystal structure prediction by machine learning: A case study of carbon allotropes[J]. Front. Phys. , 2020, 15(6): 63501-.
[2] Chen-Xiao Zhao (赵晨晓), Jin-Feng Jia (贾金锋). Stanene: A good platform for topological insulator and topological superconductor[J]. Front. Phys. , 2020, 15(5): 53201-.
[3] Mengyun He, Huimin Sun, Qing Lin He. Topological insulator: Spintronics and quantum computations[J]. Front. Phys. , 2019, 14(4): 43401-.
[4] Jia Liu, Chun Fai Chan, Ming Gong. Majorana fermions in semiconducting nanowire and Fulde–Ferrell superconductor hybrid structures[J]. Front. Phys. , 2019, 14(1): 13609-.
[5] Xin-Long Dong, Kun-Hua Zhang, Ming-Xiang Xu. First-principles study of electronic structure and magnetic properties of SrTi1−xMxO3 (M= Cr, Mn, Fe, Co, or Ni)[J]. Front. Phys. , 2018, 13(5): 137106-.
[6] Qi Pei, Xiao-Cha Wang, Ji-Jun Zou, Wen-Bo Mi. Tunable electronic structure and magnetic coupling in strained two-dimensional semiconductor MnPSe3[J]. Front. Phys. , 2018, 13(4): 137105-.
[7] Yan Wang (王研), Chun-Mei Hao (郝春梅), Hong-Mei Huang (黄红梅), Yan-Ling Li (李延龄). Elastic, dynamical, and electronic properties of LiHg and Li3Hg: First-principles study[J]. Front. Phys. , 2018, 13(2): 137102-.
[8] Xiao-Hong Li, Hong-Ling Cui, Rui-Zhou Zhang. Structural, optical, and thermal properties of MAX-phase Cr2AlB2[J]. Front. Phys. , 2018, 13(2): 136501-.
[9] Yao-Wu Guo, Wei Li, Yan Chen. Impurity- and magnetic-field-induced quasiparticle states in chiral p-wave superconductors[J]. Front. Phys. , 2017, 12(5): 127403-.
[10] Yin Zhong,Lan Zhang,Can Shao,Hong-Gang Luo. Superfluid response in heavy fermion superconductors[J]. Front. Phys. , 2017, 12(5): 127101-.
[11] Xiang-Zhuo Xing,Wei Zhou,Chun-Qiang Xu,Nan Zhou,Fei-Fei Yuan,Yu-Feng Zhang,Xiao-Feng Xu,Zhi-Xiang Shi. Phase diagram and transport properties of Sb-doped Ca0.88La0.12Fe2As2 single crystals[J]. Front. Phys. , 2017, 12(4): 127401-.
[12] Ze-Lian Wang,Wen-Hui Xie,Yong-Hong Zhao. Tunable band structure and effective mass of disordered chalcopyrite[J]. Front. Phys. , 2017, 12(1): 127103-.
[13] Arthur Losquin,Tom T. A. Lummen. Electron microscopy methods for space-, energy-, and time-resolved plasmonics[J]. Front. Phys. , 2017, 12(1): 127301-.
[14] R. Szcz¸eśniak, A. P. Durajski. Superconductivity well above room temperature in compressed MgH6[J]. Front. Phys. , 2016, 11(6): 117406-.
[15] Jiangping Hu,Jing Yuan. Robustness of s-wave pairing symmetry in iron-based superconductors and its implications for fundamentals of magnetically driven high-temperature superconductivity[J]. Front. Phys. , 2016, 11(5): 117404-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed