Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2011, Vol. 6 Issue (4) : 450-462    https://doi.org/10.1007/s11467-011-0237-5
REVIEW ARTICLE
Nuclear magnetic resonance studies of vortices in high temperature superconductors
A. M. Mounce, S. Oh, W. P. Halperin()
Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
 Download: PDF(661 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The distinct distribution of local magnetic fields due to superconducting vortices can be detected with nuclear magnetic resonance (NMR) and used to investigate vortices and related physical properties of extreme type II superconductivity. This review summarizes work on high temperature superconductors (HTS) including cuprates and pnictide materials. Recent experimental results are presented which reveal the nature of vortex matter and novel electronic states. For example, the NMR spectrum has been found to provide a sharp indication of the vortex melting transition. In the vortex solid a frequency dependent spin–lattice relaxation has been reported in cuprates, including YBa2Cu3O7-x, Bi2SrCa2Cu2O8+δ, and Tl2Ba2CuO6+δ. These results have initiated a new spectroscopy via Doppler shifted nodal quasiparticles for the investigation of vortices. At very high magnetic fields this approach is a promising method for the study of vortex core excitations. These measurements have been used to quantify an induced spin density wave near the vortex cores in Bi2SrCa2Cu2O8+δ. Although the cuprates have a different superconducting order parameter than the iron arsenide superconductors there are, nonetheless, some striking similarities between them regarding vortex dynamics and frequency dependent relaxation.

Keywords nuclear magnetic resonance (NMR)      superconductor      vortex      Doppler effect     
Corresponding Author(s): Halperin W. P.,Email:w-halperin@northwestern.edu   
Issue Date: 05 December 2011
 Cite this article:   
A. M. Mounce,S. Oh,W. P. Halperin. Nuclear magnetic resonance studies of vortices in high temperature superconductors[J]. Front. Phys. , 2011, 6(4): 450-462.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-011-0237-5
https://academic.hep.com.cn/fop/EN/Y2011/V6/I4/450
1 J. G. Bednorz and K. A. Müller, Z. Physik B , 1986, 64: 189
2 M. Lee, M. Yudkowsky, W. P. Halperin, J. Thiel, S. J. Hwu, and K. R. Poeppelmeier, Phys. Rev. B , 1987, 36(4): 2378
3 M. Takigawa, P. C. Hammel, R. H. Heffner, Z. Fisk, K. C. Ott, and J. D. Thompson, Phys. Rev. Lett. , 1989, 63(17): 1865
4 M. Lee, Y. Q. Song, W. P. Halperin, L. M. Tonge, T. J. Marks, H. O. Marcy, and C. R. Kannewurf, Phys. Rev. B , 1989, 40(1): 817
5 E. H. Brandt, Phys. Rev. Lett. , 1991, 66(24): 3213
6 V. F. Mitrovi?, , Northwestern University , 2001
7 D. E. MacLaughlin, Solid State Physics, Academic Press , 1976: 1-69
8 V. F. Mitrovi?, E. E. Sigmund, M. Eschrig, H. N. Bachman, W. P. Halperin, A. P. Reyes, P. Kuhns, and W. G. Moulton, Nature , 2001, 413(6855): 501
9 C. H. Pennington and C. P. Shlichter, Physical Properties of High Temperature Superconductors Vol. II, edited by D. M. Ginsberg, Singapore: World Scientific, 1990: 269-367
10 K. Asayama, Y. Kitaoka, G. Q. Zheng, and K. Ishida, Progress in Nuclear Magnetic Resonance Spectroscopy, 1996, 28(3-4): 221
11 C. Berthier, M. Julien, M. Horvati?, and Y. Berthier, J. Phys. I France , 1996, 6: 2205
12 A. Rigamonti, F. Borsa, and P. Carrretta, Rep. Prog. Phys. , 1998, 61(10): 1367
13 R. E. Walstedt, The NMR Probe of High-Tc Materials, Springer, 2008
14 N. J. Curro, Rep. Prog. Phys. , 2009, 72(2): 026502
15 A. A. Abrikosov, Sov. Phys. JEPT , 1957, 5: 1174
16 F. London, Superfluids , Vol. 1, New York: Wiley, 1950
17 V. Mitrovi?, E. Sigmund, and W. Halperin, Physica C , 2003, 388-389: 629
18 G. Q. Zheng, H. Ozaki, Y. Kitaoka, P. Kuhns, A. P. Reyes, and W. G. Moulton, Phys. Rev. Lett. , 2002, 88(7): 077003
19 K. Kakuyanagi, K. Kumagai, Y. Matsuda, and M. Hasegawa, Phys. Rev. Lett. , 2003, 90(19): 197003
20 A. M. Mounce, S. Oh, S. Mukhopadhyay, W. P. Halperin, A. P. Reyes, P. L. Kuhns, K. Fujita, M. Ishikado, and S. Uchida, Phys. Rev. Lett. , 2011, 106(5): 057003
21 B. Chen, P. Sengupta, W. P. Halperin, E. E. Sigmund, V. F. Mitrovi?, M. H. Lee, K. H. Kang, B. J. Mean, J. Y. Kim, and B. K. Cho, New J. Phys. , 2006, 8(11): 274
22 Y. Q. Song, Physica C , 1995, 241(1-2): 187
23 G. Koutroulakis, V. F. Mitrovi?, M. Horvati?, C. Berthier, G. Lapertot, and J. Flouquet, Phys. Rev. Lett. , 2008, 101(4): 047004
24 G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. , 1994, 66(4): 1125
25 W. K. Kwok, S. Fleshler, U. Welp, V. M. Vinokur, J. Downey, G. W. Crabtree, and M. M. Miller, Phys. Rev. Lett. , 1992, 69(23): 3370
26 D. T. Fuchs, E. Zeldov, T. Tamegai, S. Ooi, M. Rappaport, and H. Shtrikman, Phys. Rev. Lett. , 1998, 80(22): 4971
27 B. Chen, W. Halperin, P. Guptasarma, D. Hinks, V. F. Mitrovi?, A. Reyes, and P. Kuhns, Nat. Phys. , 2007, 3(4): 239
28 H. N. Bachman, A. P. Reyes, V. F. Mitrovi?, W. P. Halperin, A. Kleinhammes, P. Kuhns, and W. G. Moulton, Phys. Rev. Lett. , 1998, 80(8): 1726
29 S. Oh, A. M. Mounce, S. Mukhopadhyay, W. P. Halperin, A. B. Vorontsov, S. L. Bud’ko, P. C. Canfield, Y. Furukawa, A. P. Reyes, and P. L. Kuhns, Phys. Rev. B , 2011, 83(21): 214501
30 A. P. Reyes, X. P. Tang, H. N. Bachman, W. P. Halperin, J. A. Martindale, and P. C. Hammel, Phys. Rev. B , 1997, 55(22): R14737
31 L. I. Glazman and A. E. Koshelev, Phys. Rev. B , 1991, 43(4): 2835
32 S. K. Yip and J. A. Sauls, Phys. Rev. Lett. , 1992, 69(15): 2264
33 G. E. Volovik, Pis’ma Zh. Eksp. Teor. Fiz. , 1993, 58: 457
34 K. A. Moler, D. J. Baar, J. S. Urbach, R. Liang, W. N. Hardy, and A. Kapitulnik, Phys. Rev. Lett. , 1994, 73(20): 2744
35 K. A. Moler, D. L. Sisson, J. S. Urbach, M. R. Beasley, A. Kapitulnik, D. J. Baar, R. Liang, and W. N. Hardy, Phys. Rev. B , 1997, 55(6): 3954
36 H. Aubin, K. Behnia, S. Ooi, and T. Tamegai, Phys. Rev. Lett. , 1999, 82(3): 624
37 M. Chiao, R. W. Hill, C. Lupien, L. Taillefer, P. Lambert, R. Gagnon, and P. Fournier, Phys. Rev. B , 2000, 62(5): 3554
38 M. Takigawa, M. Ichioka, and K. Machida, Phys. Rev. Lett. , 1999, 83(15): 3057
39 N. J. Curro, C. Milling, J. Haase, and C. P. Slichter, Phys. Rev. B , 2000, 62(5): 3473
40 J. Haase, N. J. Curro, R. Stern, and C. P. Slichter, Phys. Rev. Lett. , 1998, 81(7): 1489
41 R. Wortis, A. J. Berlinsky, and C. Kallin, Phys. Rev. B , 2000, 61(18): 12342
42 K. Kakuyanagi, J. Phys. Chem. Solids , 2002, 63: 2305
43 V. F. Mitrovi?, E. E. Sigmund, W. P. Halperin, A. P. Reyes, P. Kuhns, and W. G. Moulton, Phys. Rev. B , 2003, 67(22): 220503
44 S. Oh, A. M. Mounce, S. Mukhopadhyay, W. P. Halperin, A. B. Vorontsov, S. L. Bud’ko, P. C. Canfield, Y. Furukawa, A. P. Reyes, and P. L. Kuhns, arXiv:1109.3834v2 , 2011
45 D. K. Morr, Phys. Rev. B , 2001, 63(21): 214509
46 D. Knapp, C. Kallin, A. J. Berlinsky, and R. Wortis, Phys. Rev. B , 2002, 66(14): 144508
47 R. E. Throckmorton and O. Vafek, Phys. Rev. B , 2010, 81(10): 104515
48 C. H. Recchia, J. A. Martindale, C. H. Pennington, W. L. Hults, and J. L. Smith, Phys. Rev. Lett. , 1997, 78(18): 3543
49 T. Lu and R. Wortis, Phys. Rev. B , 2006, 74(13): 134516
50 R. E. Walstedt and S. W. Cheong, Phys. Rev. B , 1995, 51(5): 3163
51 J. E. Hoffman, E. W. Hudson, K. M. Lang, V. Madhavan, H. Eisaki, S. Uchida, and J. C. Davis, Science , 2002, 295(5554): 466
52 T. Hanaguri, C. Lupien, Y. Kohsaka, D. H. Lee, M. Azuma, M. Takano, H. Takagi, and J. C. Davis, Nature , 2004, 430(7003): 1001
53 W. D. Wise, M. C. Boyer, K. Chatterjee, T. Kondo, T. Takeuchi, H. Ikuta, Y. Wang, and E. W. Hudson, Nat. Phys. , 2008, 4(9): 696
54 B. Lake, G. Aeppli, K. N. Clausen, D. F. McMorrow, K. Lefmann, N. E. Hussey, N. Mangkorntong, M. Nohara, H. Takagi, T. E. Mason, and A. Schr?der, Science , 2001, 291(5509): 1759
55 B. Lake, H. Ronnow, N. Christensen, G. Aeppli, K. Lefmann, D. F. McMorrow, P. Vorderwisch, P. Smeibidl, N. Mangkorntong, T. Sasagawa, M. Nohara, H. Takagi, and T. E. Mason, Nature , 2002, 415(6869): 299
56 B. Khaykovich, Y. S. Lee, R. W. Erwin, S. H. Lee, S. Wakimoto, K. J. Thomas, M. A. Kastner, and R. J. Birgeneau, Phys. Rev. B , 2002, 66(1): 014528
57 S. Sachdev, Rev. Mod. Phys. , 2003, 75(3): 913
58 C. Caroli, P. D. Gennes, and J. Matricon, Phys. Lett. , 1964, 9(4): 307
59 J. D. Shore, M. Huang, A. T. Dorsey, and J. P. Sethna, Phys. Rev. Lett. , 1989, 62(26): 3089
60 Y. Nakai, Y. Hayashi, K. Ishida, H. Sugawara, D. Kikuchi, and H. Sato, Physica B , 2008, 403(5-9): 1109
61 Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. , 2008, 130(11): 3296
62 I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Phys. Rev. Lett. , 2008, 101(5): 057003
63 Y. Bang, Phys. Rev. Lett. , 2010, 104(21): 217001
64 Y. Bang, arXiv:1112.0142 , 2011
65 G. E. Volovik, J. Phys. C , 1988, 21: L221
66 B. G. Silbernagel, M. Weger, and J. E. Wernick, Phys. Rev. Lett. , 1966, 17(7): 384
67 B. G. Silbernagel, M. Weger, W. G. Clark, and J. H. Wernick, Phys. Rev. , 1967, 153(2): 535
68 A. Z. Genack and A. G. Redfield, Phys. Rev. Lett. , 1973, 31(19): 1204
69 A. Z. Genack and A. G. Redfield, Phys. Rev. B , 1975, 12(1): 78
70 R. Wortis, , University of Illinois Champaign Urbana , 1998
[1] Chang-Da Zhou, Zhen Mou, Rui Bao, Zhong Li, Shu-Yun Teng. Compound plasmonic vortex generation based on spiral nanoslits[J]. Front. Phys. , 2021, 16(3): 33503-.
[2] Ya-Nan Qin, Min Li, Yudi Feng, Siqiang Luo, Yueming Zhou, Peixiang Lu. Extracting the phase distribution of the electron wave packet ionized by an elliptically polarized laser pulse[J]. Front. Phys. , 2021, 16(3): 32502-.
[3] Yi-Yin Zheng, Shan-Tong Chen, Zhi-Peng Huang, Shi-Xuan Dai, Bin Liu, Yong-Yao Li, Shu-Rong Wang. Quantum droplets in two-dimensional optical lattices[J]. Front. Phys. , 2021, 16(2): 22501-.
[4] Chen-Xiao Zhao (赵晨晓), Jin-Feng Jia (贾金锋). Stanene: A good platform for topological insulator and topological superconductor[J]. Front. Phys. , 2020, 15(5): 53201-.
[5] Mengyun He, Huimin Sun, Qing Lin He. Topological insulator: Spintronics and quantum computations[J]. Front. Phys. , 2019, 14(4): 43401-.
[6] Jia Liu, Chun Fai Chan, Ming Gong. Majorana fermions in semiconducting nanowire and Fulde–Ferrell superconductor hybrid structures[J]. Front. Phys. , 2019, 14(1): 13609-.
[7] Yong-Kai Liu, Hong-Xia Yue, Liang-Liang Xu, Shi-Jie Yang. Vortex-pair states in spin-orbit-coupled Bose–Einstein condensates with coherent coupling[J]. Front. Phys. , 2018, 13(5): 130316-.
[8] Rong-Xuan Zhong, Zhao-Pin Chen, Chun-Qing Huang, Zhi-Huan Luo, Hai-Shu Tan, Boris A. Malomed, Yong-Yao Li. Self-trapping under two-dimensional spin-orbit coupling and spatially growing repulsive nonlinearity[J]. Front. Phys. , 2018, 13(4): 130311-.
[9] Xuzhen Gao, Jianhua Zeng. Two-dimensional matter-wave solitons and vortices in competing cubic-quintic nonlinear lattices[J]. Front. Phys. , 2018, 13(1): 130501-.
[10] Yao-Wu Guo, Wei Li, Yan Chen. Impurity- and magnetic-field-induced quasiparticle states in chiral p-wave superconductors[J]. Front. Phys. , 2017, 12(5): 127403-.
[11] Yin Zhong,Lan Zhang,Can Shao,Hong-Gang Luo. Superfluid response in heavy fermion superconductors[J]. Front. Phys. , 2017, 12(5): 127101-.
[12] Xiang-Zhuo Xing,Wei Zhou,Chun-Qiang Xu,Nan Zhou,Fei-Fei Yuan,Yu-Feng Zhang,Xiao-Feng Xu,Zhi-Xiang Shi. Phase diagram and transport properties of Sb-doped Ca0.88La0.12Fe2As2 single crystals[J]. Front. Phys. , 2017, 12(4): 127401-.
[13] R. Szcz¸eśniak, A. P. Durajski. Superconductivity well above room temperature in compressed MgH6[J]. Front. Phys. , 2016, 11(6): 117406-.
[14] Jiangping Hu,Jing Yuan. Robustness of s-wave pairing symmetry in iron-based superconductors and its implications for fundamentals of magnetically driven high-temperature superconductivity[J]. Front. Phys. , 2016, 11(5): 117404-.
[15] A. P. Durajski. Anisotropic evolution of energy gap in Bi2212 superconductor[J]. Front. Phys. , 2016, 11(5): 117408-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed