Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2012, Vol. 7 Issue (5) : 509-513    https://doi.org/10.1007/s11467-012-0258-8
RESEARCH ARTICLE
Quantum optical correlation through metamaterials
Yun-Xia Dong1(), Xiao-Hua Cui2
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China; 2. School of Mathematics and Physics, North China Electric Power University, Beijing 102206, China
 Download: PDF(294 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Based on the quantization scheme of the radiation fields inthe dispersive and absorptive magnetic media, the normally orderedcorrelation functions of the outgoing field through a metamaterialplate are obtained. Then the relative photon-number densities of thetransmitted field, the reflected field and the absorbed field aregotten through the correlation functions. Furthermore, the contributionsof the relative permittivity and permeability of the metamaterialsto the transmission are analyzed. Our results show that the permittivity and permeability reinforce the transmission for frequencies that arebig compared with the magnetic resonance frequency.

Keywords metamaterials      magnetic resonance      quantum optical correlation     
Corresponding Author(s): Dong Yun-Xia,Email:dyx2007@ncepu.edu.cn   
Issue Date: 01 October 2012
 Cite this article:   
Yun-Xia Dong,Xiao-Hua Cui. Quantum optical correlation through metamaterials[J]. Front. Phys. , 2012, 7(5): 509-513.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-012-0258-8
https://academic.hep.com.cn/fop/EN/Y2012/V7/I5/509
1 D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. , 2000, 84(18): 4184
doi: 10.1103/PhysRevLett.84.4184
2 R. A. Shelby, D. R. Smith, and S. Schultz, Science , 2001, 292(5514): 77
doi: 10.1126/science.1058847
3 J. B. Pendry, Phys. Rev. Lett. , 2000, 85(18): 3966
doi: 10.1103/PhysRevLett.85.3966
4 R. W. Ziolkowski and E. Heyman, Phys. Rev. E , 2001, 64(5): 056625
doi: 10.1103/PhysRevE.64.056625
5 Z. M. Zhang and C. J. Fu, Appl.Phys. Lett. , 2002, 80(6): 1097
doi: 10.1063/1.1448172
6 N. Fang, H. Lee, C. Sun, and X. Zhang, Science , 2005, 308(5721): 534
doi: 10.1126/science.1108759
7 Y. H. Zhao, A. A. Nawaz, S. C. S. Lin, Q. Hao, B. Kiraly, and T. J. Huang, J. Phys. D , 2011, 44(41): 415101
doi: 10.1088/0022-3727/44/41/415101
8 L. F. Shen, S. L. He, and S. S. Xiao, Phys. Rev. B , 2004, 69(11): 115111
doi: 10.1103/PhysRevB.69.115111
9 L. Zhou, H. Q. Li, Y. Q. Qin, Z. Y. Wei, and C. T. Chan, Appl. Phys. Lett. , 2005, 86(10): 101101
doi: 10.1063/1.1881797
10 J. B. Pendry, D. Schurig, and D. R. Smith, Science , 2006, 312(5781): 1780
doi: 10.1126/science.1125907
11 Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, Phys. Rev. Lett. , 2009, 102(25): 253902
doi: 10.1103/PhysRevLett.102.253902
12 Y. Lai, J. Ng, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, Front. Phys. , 2010, 5(3): 308
doi: 10.1007/s11467-010-0008-8
13 I. S. Nefedov and S. A. Tretyakov, Phys. Rev. E , 2002, 66(3): 036611
doi: 10.1103/PhysRevE.66.036611
14 I. V. Shadrivov, N. A. Zharova, A. A. Zharov, and Yu. S. Kivshar, Phys. Rev. E , 2004, 70(4): 046615
doi: 10.1103/PhysRevE.70.046615
15 J. Li, L. Zhou, C. T. Chan, and P. Sheng, Phys. Rev. Lett. , 2003, 90(8): 083901
doi: 10.1103/PhysRevLett.90.083901
16 Y. Dong and X. Zhang, Phys. Lett. A , 2006, 359(5): 542
doi: 10.1016/j.physleta.2006.07.001
17 Y. Dong and X. Zhang, Opt. Express , 2008, 16(21): 16950
doi: 10.1364/OE.16.016950
18 J. M. Hao, M. Qiu, and L. Zhou, Front. Phys. , 2010, 5(3): 291
doi: 10.1007/s11467-010-0005-y
19 R. Ruppin, Solid State Commun. , 2000, 116(8): 411
doi: 10.1016/S0038-1098(00)00362-8
20 Y. Y. Kim and Y. K. Cho, Opto-Electron.Rev. , 2010, 18(4): 388
doi: 10.2478/s11772-010-0041-8
21 A. A. Asatryan, L. C. Botten, M. A. Byrne, V. D. Freilikher, S. A. Gredeskul, I. V. Shadrivov, R. C. McPhedran, and Y. S. Kivshar, Phys. Rev. B , 2012, 85(4): 045122
doi: 10.1103/PhysRevB.85.045122
22 Y. Urzhumov and D. R. Smith, Phys. Rev. B , 2011, 83(20): 205114
doi: 10.1103/PhysRevB.83.205114
23 S. M. Wang, S. Y. Mu, C. Zhu, Y. X. Gong, P. Xu, H. Liu, T. Li, S. N. Zhu, and X. Zhang, Opt. Express , 2012, 20(5): 5213
doi: 10.1364/OE.20.005213
24 T. Gruner and D. G. Welsch, Phys. Rev. A , 1996, 54(2): 1661
doi: 10.1103/PhysRevA.54.1661
[1] Yang-Yang Fu, Ya-Dong Xu, Huan-Yang Chen. Negative refraction based on purely imaginary metamaterials[J]. Front. Phys. , 2018, 13(4): 134206-.
[2] Gaurav Bhole, Jonathan A. Jones. Practical pulse engineering: Gradient ascent without matrix exponentiation[J]. Front. Phys. , 2018, 13(3): 130312-.
[3] Ting-Hua Li (李廷华),Dong-Lai Zhu(朱东来),Fu-Chun Mao(毛福春),Ming Huang(黄铭),Jing-Jing Yang(杨晶晶),Shou-Bo Li. Design of diamond-shaped transient thermal cloaks with homogeneous isotropic materials[J]. Front. Phys. , 2016, 11(5): 110503-.
[4] Mohammad Mehdi Sadeghi, Hamid Nadgaran, Huanyang Chen. Perfect field concentrator using zero index metamaterials and perfect electric conductors[J]. Front. Phys. , 2014, 9(1): 90-93.
[5] Zhi-Yuan Li. Nanophotonics in China: Overviews and highlights[J]. Front. Phys. , 2012, 7(6): 601-631.
[6] D. V. B. Murthy, Gopalan Srinivasan. Broadband ferromagnetic resonance studies on influence of interface bonding on magnetoeletric effects in ferrite–ferroelectric composites[J]. Front. Phys. , 2012, 7(4): 418-423.
[7] A. M. Mounce, S. Oh, W. P. Halperin. Nuclear magnetic resonance studies of vortices in high temperature superconductors[J]. Front. Phys. , 2011, 6(4): 450-462.
[8] Pratik CHATURVEDI, Nicholas X. FANG, . Sub-diffraction-limited far-field imaging in infrared[J]. Front. Phys. , 2010, 5(3): 324-329.
[9] Jia-ming HAO(郝加明), Min QIU(仇旻), Lei ZHOU(周磊), . Manipulate light polarizations with metamaterials: From microwave to visible[J]. Front. Phys. , 2010, 5(3): 291-307.
[10] Xin-hua PENG (彭新华), Dieter SUTER, . Spin qubits for quantum simulations [J]. Front. Phys. , 2010, 5(1): 1-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed