|
|
Lattice Boltzmann model for combustion and detonation |
Bo Yan, Ai-Guo Xu( ), Guang-Cai Zhang( ), Yang-Jun Ying, Hua Li |
National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P. O. Box 8009-26, Beijing 100088, China |
|
|
Abstract In this paper we present a lattice Boltzmann model for combustion and detonation. In this model the fluid behavior is described by a finite-difference lattice Boltzmann model by Gan et al. [Physica A, 2008, 387: 1721]. The chemical reaction is described by the Lee-Tarver model [Phys. Fluids, 1980, 23: 2362]. The reaction heat is naturally coupled with the flow behavior. Due to the separation of time scales in the chemical and thermodynamic processes, a key technique for a successful simulation is to use the operator-splitting scheme. The new model is verified and validated by well-known benchmark tests. As a specific application of the new model, we studied the simple steady detonation phenomenon. To show the merit of LB model over the traditional ones, we focus on the reaction zone to study the non-equilibrium effects. It is interesting to find that, at the von Neumann peak, the system is nearly in its thermodynamic equilibrium. At the two sides of the von Neumann peak, the system deviates from its equilibrium in opposite directions. In the front of von Neumann peak, due to the strong compression from the reaction product behind the von Neumann peak, the system experiences a sudden deviation from thermodynamic equilibrium. Behind the von Neumann peak, the release of chemical energy results in thermal expansion of the matter within the reaction zone, which drives the system to deviate the thermodynamic equilibrium in the opposite direction. From the deviation from thermodynamic equilibrium, Δm*, defined in this paper, one can understand more on the macroscopic effects of the system due to the deviation from its thermodynamic equilibrium.
|
Keywords
lattice Boltzmann method
Lee-Tarver model
viscous detonation
deviation from equilibrium
|
Corresponding Author(s):
Xu Ai-Guo,Email:Xu_Aiguo@iapcm.ac.cn; Zhang Guang-Cai,Email:Zhang_Guangcai@iapcm.ac.cn
|
Issue Date: 01 February 2013
|
|
1 |
S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , New York: Oxford University Press, 2001
|
2 |
R. Benzi, S. Succi, and M. Vergassola, Phys. Rep. , 1992, 222(3): 145 doi: 10.1016/0370-1573(92)90090-M
|
3 |
A. Xu, G. Gonnella, and A. Lamura, Phys. Rev. E , 2003, 67(5): 056105 doi: 10.1103/PhysRevE.67.056105
|
4 |
A. Xu, G. Gonnella, and A. Lamura, Phys. Rev. E , 2006, 74(1): 011505 doi: 10.1103/PhysRevE.74.011505
|
5 |
A. Xu, G. Gonnella, and A. Lamura, Physica A , 2004, 331: 10 doi: 10.1016/j.physa.2003.09.040
|
6 |
A. Xu, G. Gonnella, and A. Lamura, Physica A , 2004, 334: 750 doi: 10.1016/j.physa.2004.06.057
|
7 |
A. Xu, G. Gonnella, and A. Lamura, Physica A , 2006, 362: 42 doi: 10.1016/j.physa.2005.09.015
|
8 |
C. Aidun and J. Clausen, Annu. Rev. Fluid Mech. , 2010, 42(1): 439 doi: 10.1146/annurev-fluid-121108-145519
|
9 |
S. Chen, H. Chen, D. Martnez, and W. Matthaeus, Phys. Rev. Lett. , 1991, 67(27): 3776 doi: 10.1103/PhysRevLett.67.3776
|
10 |
G. Vahala, B. Keating, M. Soe, J. Yepezand, and L. Vahala, Commun. Comput. Phys. , 2008, 4: 624
|
11 |
A. J. C. Ladd, J. Fluid Mech. , 1994, 271: 285 doi: 10.1017/S0022112094001771
|
12 |
A. J. C. Ladd, J. Fluid Mech. , 1994, 271: 311 doi: 10.1017/S0022112094001783
|
13 |
S. Succi, E. Foti, and F. Higuera, Europhys. Lett. , 1989, 10(5): 433 doi: 10.1209/0295-5075/10/5/008
|
14 |
Y. Xu, H. Li, S. Guo, and G. Huang, Commun. Theor. Phys. , 2004, 41: 949
|
15 |
Y. Xu, Y. Liu, and G. Huang, Chin. Phys. Lett. , 2004, 21: 2454 doi: 10.1088/0256-307X/21/12/037
|
16 |
Y. Xu, Y. Liu, X. Yang, and F. Wu, Commun. Theor. Phys. , 2008, 49: 1319 doi: 10.1088/0253-6102/49/5/51
|
17 |
M. Watari and M. Tsutahara, Phys. Rev. E , 2003, 67(3): 036306 doi: 10.1103/PhysRevE.67.036306
|
18 |
A. Xu, Europhys. Lett. , 2005, 69(2): 214 doi: 10.1209/epl/i2004-10334-y
|
19 |
A. Xu, Phys. Rev. E , 2005, 71(6): 066706 doi: 10.1103/PhysRevE.71.066706
|
20 |
Y. Gan, A. Xu, G. Zhang, and Y. Li, Commun. Theor. Phys. , 2008, 50(2): 201 doi: 10.1088/0253-6102/50/2/17
|
21 |
Y. Gan, A. Xu, G. Zhang, and Y. Li, Commun. Theor. Phys. , 2011, 56(3): 490 doi: 10.1088/0253-6102/56/3/18
|
22 |
Y. Gan, A. Xu, G. Zhang, and Y. Li, Phys. Rev. E , 2011, 83(5): 056704 doi: 10.1103/PhysRevE.83.056704
|
23 |
Q. Li, Y. L. He, Y. Wang, and W. Q. Tao, Phys. Rev. E , 2007, 76(5): 056705 doi: 10.1103/PhysRevE.76.056705
|
24 |
Q. Li, Y. L. He, Y. Wang, and G. H. Tang, Phys. Lett. A , 2009, 373(25): 2101 doi: 10.1016/j.physleta.2009.04.036
|
25 |
Y. Wang, Y. L. He, T. Zhao, G. H. Tang, and W. Q. Tao, Int. J. Mod. Phys. C , 2007, 18(12): 1961 doi: 10.1142/S0129183107011868
|
26 |
M. R. Swift, W. R. Osborn, and J. M. Yeomans, Phys. Rev. Lett. , 1995, 75(5): 830 doi: 10.1103/PhysRevLett.75.830
|
27 |
X. He, S. Chen, and R. Zhang, J. Comput. Phys. , 1999, 152(2): 642 doi: 10.1006/jcph.1999.6257
|
28 |
M. Sbragaglia, R. Benzi, L. Biferale, S. Succi, K. Sugiyama, and F. Toschi, Phys. Rev. E , 2007, 75(2): 026702 doi: 10.1103/PhysRevE.75.026702
|
29 |
V. Sofonea, A. Lamura, G. Gonnella, and A. Cristea, Phys. Rev. E , 2004, 70(4): 046702 doi: 10.1103/PhysRevE.70.046702
|
30 |
A. Cristea, G. Gonnella, A. Lamura, and V. Sofonea, Commun. Comput. Phys. , 2010, 7: 350
|
31 |
Y. Gan, A. Xu, G. Zhang, and Y. Li, Physica A , 2008, 387(8-9): 1721
|
32 |
Y. Gan, A. Xu, G. Zhang, Y. Li, and H. Li, Phys. Rev. E , 2011, 84(4): 046715 doi: 10.1103/PhysRevE.84.046715
|
33 |
Y. Gan, A. Xu, G. Zhang, P. Zhang, and Y. Li, Europhys. Lett. , 2012, 97(4): 44002 doi: 10.1209/0295-5075/97/44002
|
34 |
Y. Gan, A. Xu, G. Zhang, and Y. Li, Front. Phys. , 2012, 7(4): 481 doi: 10.1007/s11467-012-0245-0
|
35 |
A. Xu, G. Zhang, Y. Gan, F. Chen, and X. Yu, Front. Phys. , 2012, 7(5): 582 doi: 10.1007/s11467-012-0269-5
|
36 |
X. F. Pan, A. Xu, G. Zhang, and S. Jiang, Int. J. Mod. Phys. C , 2007, 18(11): 1747 doi: 10.1142/S0129183107011716
|
37 |
F. Chen, A. Xu, G. Zhang, Y. Gan, T. Cheng, and Y. Li, Commun. Theor. Phys. , 2009, 52: 681 doi: 10.1088/0253-6102/52/4/25
|
38 |
F. Chen, A. Xu, G. Zhang, and Y. Li, Commun. Theor. Phys. , 2010, 54(6): 1121 doi: 10.1088/0253-6102/54/6/28
|
39 |
F. Chen, A. Xu, G. Zhang, and Y. Li, Commun. Theor. Phys. , 2011, 55(2): 325 doi: 10.1088/0253-6102/55/2/23
|
40 |
A. N. Gorban and D. Packwood, Phys. Rev. E , 2012, 86(2): 025701(R) doi: 10.1103/PhysRevE.86.025701
|
41 |
F. J. Higuera, S. Succi, and R. Benzi, Europhys. Lett. , 1989, 9(4): 345 doi: 10.1209/0295-5075/9/4/008
|
42 |
P. Lallemand and L. S. Luo, Phys. Rev. E , 2000, 61(6): 6546 doi: 10.1103/PhysRevE.61.6546
|
43 |
P. Lallemand and L. S. Luo, Phys. Rev. E , 2003, 68(3): 036706 doi: 10.1103/PhysRevE.68.036706
|
44 |
F. Chen, A. Xu, G. Zhang, and Y. Li, Phys. Lett. A , 2011, 375(21): 2129 doi: 10.1016/j.physleta.2011.04.013
|
45 |
F. Chen, A. Xu, G. Zhang, Y. Li, and S. Succi, Europhys. Lett. , 2010, 90(5): 54003 doi: 10.1209/0295-5075/90/54003
|
46 |
F. Tosi, S. Ubertini, S. Succi, H. Chen, and I. V. Karlin, Math. Comput. Simul. , 2006, 72(2-6): 227
|
47 |
S. Ansumali and I. V. Karlin, J. Stat. Phys. , 2002, 107(1/2): 291 doi: 10.1023/A:1014575024265
|
48 |
S. S. Chikatamarla and I. V. Karlin, Phys. Rev. Lett. , 2006, 97(19): 190601 doi: 10.1103/PhysRevLett.97.190601
|
49 |
S. S. Chikatamarla and I. V. Karlin, Phys. Rev. E , 2009, 79(4): 046701 doi: 10.1103/PhysRevE.79.046701
|
50 |
Y. Li, R. Shock, R. Zhang, and H. Chen, J. Fluid Mech. , 2004, 519: 273 doi: 10.1017/S0022112004001272
|
52 |
F. Chen, A. Xu, G. Zhang, and Y. Li, Commun. Theor. Phys. , 2011, 56(2): 333 doi: 10.1088/0253-6102/56/2/25
|
53 |
W. Fickett and W. C. Davis, Detonation,Theory and Experiment , New York: Dover Publications, Inc . Mineola, 1979
|
54 |
M. Berthelot, P. Vielle, and C. R. Hebd, Sceances Acad. Sci. , 1881, 93: 18
|
55 |
M. Berthelot, P. Vielle, and C. R. Hebd, Sceances Acad. Sci. , 1882, 94: 149
|
56 |
E. Mallard, H. Le Chatelier, and C. R. Hebd, Sceances Acad. Sci. , 1881, 93: 145
|
57 |
D. L. Chapmann, Philos. Mag. , 1899, 47: 90
|
58 |
E. Jouguet, J. Math. Pures Appl., 1905, 1: 347
|
59 |
Ya. B. Zeldovich and S. A. Kompaneets, Zh. Eksp. Teor. Fiz. , 1940, 10: 542
|
60 |
J. Von Neumann, Theory of Detonation Waves , New York: Macmillan, 1942
|
61 |
W. Doering, Ann. Phys. , 1943, 43: 421 doi: 10.1002/andp.19434350605
|
62 |
C. L. Mader, Numerical Modeling of Explosives and Propellants , New York: CRC Press, 2008
|
63 |
C. Wang, X. Zhang, C. W. Shu, and J. Ning, J. Comput. Phys. , 2012, 231(2): 653 doi: 10.1016/j.jcp.2011.10.002
|
64 |
S. Tan, C. Wang, C. W. Shu, and J. Ning, J. Comput. Phys. , 2012, 231(6): 2510 doi: 10.1016/j.jcp.2011.11.037
|
65 |
S. Karni, J. Comput. Phys. , 1994, 112(1): 31 doi: 10.1006/jcph.1994.1080
|
66 |
A. Marquina and P. Mulet, J. Comput. Phys. , 2003, 185(1): 120 doi: 10.1016/S0021-9991(02)00050-5
|
67 |
J. J. Quirk and S. Karni, J. Fluid Mech. , 1996, 318: 129 doi: 10.1017/S0022112096007069
|
68 |
K. M. Shyue, J. Comput. Phys. , 1998, 142(1): 208 doi: 10.1006/jcph.1998.5930
|
69 |
R. Loubre, P. H. Maire, M. Shashkov, J. Breil, and S. Galera, J. Comput. Phys. , 2010, 229: 4724 doi: 10.1016/j.jcp.2010.03.011
|
70 |
S. Galera, P. H. Maire, and J. Breil, J. Comput. Phys. , 2010, 229(16): 5755 doi: 10.1016/j.jcp.2010.04.019
|
71 |
S. Ssher and R. P. Fedkiw, J. Comput. Phys. , 2001, 169: 463 doi: 10.1006/jcph.2000.6636
|
72 |
M. Sussman, P. Smereka, and S. Osher, J. Comput. Phys. , 1994, 114(1): 146 doi: 10.1006/jcph.1994.1155
|
73 |
R. Scardovelli and S. Zaleski, Annu. Rev. Fluid Mech. , 1999, 31(1): 567 doi: 10.1146/annurev.fluid.31.1.567
|
74 |
G. Tryggvason, B. Bunner, A. Esmaeeli, and D. Juric, J. Comput. Phys. , 2001, 169: 708 doi: 10.1006/jcph.2001.6726
|
75 |
J. Glimm, J. W. Grove, X. L. Li, and D. C. Tan, SIAM J. Sci. Comput. , 2000, 21(6): 2240 doi: 10.1137/S1064827598340500
|
76 |
D. K. Mao, J. Comput. Phys., 2007, 226(2): 1550 doi: 10.1016/j.jcp.2007.06.004
|
77 |
J. Sun and J. Zhu, Theory of Detonation Physics , Beijing: National Defense Industry Press, 1995(in Chinese)
|
78 |
S. Succi, G. Bella, and F. Papetti, J. Sci. Comput. , 1997, 12(4): 395 doi: 10.1023/A:1025676913034
|
79 |
O. Filippova and D. Hanel, J. Comput. Phys. , 2000, 158(2): 139 doi: 10.1006/jcph.1999.6405
|
80 |
O. Filippova and D. Hanel, Comput. Phys. Commun. , 2000, 129(1-3): 267
|
81 |
K. Yamamoto, X. He, and G. D. Doolen, J. Stat. Phys. , 2002, 107(1/2): 367 doi: 10.1023/A:1014583226083
|
82 |
T. Lee, C. L. Lin, and L. D. Chen, J. Comput. Phys. , 2006, 215(1): 133 doi: 10.1016/j.jcp.2005.10.021
|
83 |
E. L. Lee and C. M. Tarver, Phys. Fluids , 1980, 23(12): 2362 doi: 10.1063/1.862940
|
84 |
R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves , New York: Interscienc Publishers Inc., 1948
|
85 |
W. W. Wood, Phys. Fluids , 1963, 6(8): 1081 doi: 10.1063/1.1706865
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|