3×3)R30? interface" /> 3×3)R30? interface" /> 3×3)R30? interface" />
Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2013, Vol. 8 Issue (1) : 44-49    https://doi.org/10.1007/s11467-013-0290-3
RESEARCH ARTICLE
Strong localization across the metal-insulator transition at the Ag/Si(111)-(3×3)R30? interface
Yuan-Yuan Tang, Jian-Dong Guo()
Beijing National Laboratory for Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
 Download: PDF(316 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We present the temperature dependent electrical transport measurements of Ag/Si(111)-(3×3)R30? by the in situ micro-four-point probe method integrated with scanning tunneling microscopy. The surface structure characterizations show hexagonal patterns at room temperature, which supports the inequivalent triangle (IET) model. A metal-insulator transition occurs at ~115 K.The lowtemperature transportmeasurements clearly reveal the strong localization characteristics of the insulating phase.

Keywords surface conductivity      metal-insulator transition      localization      scanning tunneling microscopy     
Corresponding Author(s): Guo Jian-Dong,Email:jdguo@iphy.ac.cn   
Issue Date: 01 February 2013
 Cite this article:   
Yuan-Yuan Tang,Jian-Dong Guo. Strong localization across the metal-insulator transition at the Ag/Si(111)-(3×3)R30? interface[J]. Front. Phys. , 2013, 8(1): 44-49.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-013-0290-3
https://academic.hep.com.cn/fop/EN/Y2013/V8/I1/44
1 T. Uchihashi, P. Mishra, M. Aono, and T. Nakayama, Phys. Rev. Lett. , 2011, 107(20): 207001
doi: 10.1103/PhysRevLett.107.207001
2 S. Yamazaki, Y. Hosomura, I. Matsuda, R. Hobara, T. Eguchi, Y. Hasegawa, and S. Hasegawa, Phys. Rev. Lett. , 2011, 106(11): 116802
doi: 10.1103/PhysRevLett.106.116802
3 T. Hirahara, I. Matsuda, S. Yamazaki, N. Miyata, S. Hasegawa, and T. Nagao, Appl. Phys. Lett. , 2007, 91(20): 202106
doi: 10.1063/1.2813613
4 F. Song, L. Gammelgaard, Ph. Hofmann, and J. W. Wells, Appl. Phys. Lett. , 2011, 98(5): 052106
doi: 10.1063/1.3543853
5 T. Tanikawa, I. Matsuda, T. Kanagawa, and S. Hasegawa, Phys. Rev. Lett. , 2004, 93(1): 016801
doi: 10.1103/PhysRevLett.93.016801
6 H. Aizawa, M. Tsukada, N. Sato, and S. Hasegawa, Surf. Sci. , 1999, 429(1-3): L509
7 N. Sato, S. Takeda, T. Nagao, and S. Hasegawa, Phys. Rev. B , 1999, 59(3): 2035
doi: 10.1103/PhysRevB.59.2035
8 Y. Nakamura, Y. Kondo, J. Nakamura, and S. Watanabe, Phys. Rev. Lett. , 2001, 87(15): 156102
doi: 10.1103/PhysRevLett.87.156102
9 Y. G. Ding, C. T. Chan, and K. M. Ho, Phys. Rev. Lett. , 1991, 67(11): 1454
doi: 10.1103/PhysRevLett.67.1454
10 S.Watanabe, M. Aono, and M. Tsukada, Phys. Rev. B , 1991, 44(15): 8330
doi: 10.1103/PhysRevB.44.8330
11 I. Matsuda, H. Morikawa, C. Liu, S. Ohuchi, S. Hasegawa, T. Okuda, T. Kinoshita, C. Ottaviani, A. Cricenti, M. D’angelo, P. Soukiassian, and G. L. Lay, Phys. Rev. B , 2003, 68(8): 085407
doi: 10.1103/PhysRevB.68.085407
12 H. Tajiri, K. Sumitani, S. Nakatani, A. Nojima, T. Takahashi, K. Akimoto, H. Sugiyama, X. Zhang, and H. Kawata, Phys. Rev. B , 2003, 68(3): 035330
doi: 10.1103/PhysRevB.68.035330
13 J. W. Wells, J. F. Kallehauge, and Ph. Hofmann , J. Phys.: Condens. Matter , 2007, 19(17): 176008
doi: 10.1088/0953-8984/19/17/176008
14 K. J. Wan, X. F. Lin, and J. Nogami, Phys. Rev. B , 2006, 74: 201304(R)
doi: 10.1103/PhysRevB.74.144109
15 Y. Nakajima, S. Takeda, T. Nagao, S. Hasegawa, and X. Tong, Phys. Rev. B , 1997, 56(11): 6782
doi: 10.1103/PhysRevB.56.6782
16 T. Hirahara, I. Matsuda, M. Ueno, and S. Hasegawa, Surf. Sci. , 2004, 563(1-3): 191
17 I. Matsuda, T. Hirahara, M. Konishi, C. Liu, H. Morikawa, M. D’angelo, S. Hasegawa, T. Okuda, and T. Kinoshita, Phys. Rev. B , 2005, 71(23): 235315
doi: 10.1103/PhysRevB.71.235315
18 J. N. Crain, M. C. Gallagher, J. L. McChesney, M. Bissen, and F. J. Himpsel, Phys. Rev. B , 2005, 72(4): 045312
doi: 10.1103/PhysRevB.72.045312
19 S. Hasegawa, X. Tong, S. Takeda, N. Sato, and T. Nagao, Prog. Surf. Sci. , 1999, 60(5-8): 89
20 I. Matsuda, C. Liu, T. Hirahara, M. Ueno, T. Tanikawa, T. Kanagawa, R. Hobara, S. Yamazaki, S. Hasegawa, and K. Kobayashi, Phys. Rev. Lett. , 2007, 99(14): 146805
doi: 10.1103/PhysRevLett.99.146805
21 C. Liu, I. Matsuda, S. Yoshimoto, T. Kanagawa, and S. Hasegawa, Phys. Rev. B , 2008, 78(3): 035326
doi: 10.1103/PhysRevB.78.035326
22 S. Hasegawa, I. Shiraki, F. Tanabe, R. Hobara, T. Kanagawa, T. Tanikawa, I. Matsuda, C. L. Petersen, T. M. Hansen, P. Boggild, and F. Grey, Surf. Rev. Lett. , 2003, 10(06): 963
doi: 10.1142/S0218625X03005736
23 N. Miyata, R. Hobara, H. Narita, T. Hirahara, S. Hasegawa, and I. Matsuda, Jpn. J. Appl. Phys. , 2011, 50: 036602
doi: 10.1143/JJAP.50.036602
24 T. Tanikawa, I. Matsuda, R. Hobara, and S. Hasegawa, Surf. Sci. Nanotechnol. , 2003, 1: 50
doi: 10.1380/ejssnt.2003.50
25 S. Hasegawa and F. Grey, Surf. Sci. , 2002, 500(1-3): 84
26 R. Hobara, N. Nagamura, S. Hasegawa, I. Matsuda, Y. Yamamoto, Y. Miyatake, and T. Nagamura, Rev. Sci. Instrum. , 2007, 78(5): 053705
doi: 10.1063/1.2735593
27 http://www.capres.com
28 M. Ueno, I. Matsuda, C. Liu, and S. Hasegawa, Jpn. J. Appl. Phys. , 2003, 42: 4894
doi: 10.1143/JJAP.42.4894
29 Y. Nakajima, G. Uchida, T. Nagao, and S. Hasegawa, Phys. Rev. B , 1996, 54(19): 14134
doi: 10.1103/PhysRevB.54.14134
30 H. M. Zhang, J. B. Gustafsson, and L. S. O. Johansson, Phys. Rev. B , 2006, 74: 201304(R)
doi: 10.1103/PhysRevB.74.201304
31 X. Tong, C. S. Jiang, and S. Hasegawa, Phys. Rev. B , 1998, 57(15): 9015
doi: 10.1103/PhysRevB.57.9015
32 P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. , 1985, 57(2): 287
doi: 10.1103/RevModPhys.57.287
[1] Ya-Hui Mao, Huan Shan, Jin-Rong Wu, Ze-Jun Li, Chang-Zheng Wu, Xiao-Fang Zhai, Ai-Di Zhao, Bing Wang. Observation of pseudogap in SnSe2 atomic layers grown on graphite[J]. Front. Phys. , 2020, 15(4): 43501-.
[2] Yuan Gan, Jiyuan Liang, Chang-woo Cho, Si Li, Yanping Guo, Xiaoming Ma, Xuefeng Wu, Jinsheng Wen, Xu Du, Mingquan He, Chang Liu, Shengyuan A. Yang, Kedong Wang, Liyuan Zhang. Bandgap opening in MoTe2 thin flakes induced by surface oxidation[J]. Front. Phys. , 2020, 15(3): 33602-.
[3] Fei Song, Jin-Yu Chen, Zhi-Ping Wang, Ben-Li Yu. Three-dimensional atom localization via spontaneous emission in a four-level atom[J]. Front. Phys. , 2018, 13(5): 134208-.
[4] Longjuan Kong, Kehui Wu, Lan Chen. Recent progress on borophene: Growth and structures[J]. Front. Phys. , 2018, 13(3): 138105-.
[5] Jian-Lei Ge,Tian-Ru Wu,Ming Gao,Zhan-Bin Bai,Lu Cao,Xue-Feng Wang,Yu-Yuan Qin,Feng-Qi Song. Weak localization of bismuth cluster-decorated graphene and its spin–orbit interaction[J]. Front. Phys. , 2017, 12(4): 127210-.
[6] Hai-Zhou Lu,Shun-Qing Shen. Quantum transport in topological semimetals under magnetic fields[J]. Front. Phys. , 2017, 12(3): 127201-.
[7] Yong-qing Li, Ke-hui Wu, Jun-ren Shi, Xin-cheng Xie. Electron transport properties of three-dimensional topological insulators[J]. Front. Phys. , 2012, 7(2): 165-174.
[8] Shi-xuan DU (杜世萱), Ye-liang WANG (王业亮), Qi LIU (刘奇), Hai-gang ZHANG (张海刚), Hai-ming GUO (郭海明), Hong-jun GAO (高鸿钧). Understanding formation of molecular rotor array on Au(111) surface[J]. Front Phys Chin, 2010, 5(4): 380-386.
[9] Qin LIU (刘琴), Ke-dong WANG (王克东), Xu-dong XIAO (肖旭东). Surface dynamics studied by time-dependent tunneling current[J]. Front Phys Chin, 2010, 5(4): 357-368.
[10] LIU Can-de, LIU Wen, SU Xi-yu, LI Feng-ling, WU Da-peng. Dynamical behaviors of an exciton in an asymmetric double coupled quantum dot[J]. Front. Phys. , 2006, 1(2): 238-242.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed