|
|
Structural and elastic properties of Ce2O3 under pressure from LDA+U method |
Yuan-Yuan Qi, Zhen-Wei Niu, Cai Cheng, Yan Cheng( ) |
Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China |
|
|
Abstract We investigate the structural and elastic properties of hexagonal Ce2O3 under pressure using LDA+U scheme in the frame of density functional theory (DFT). The obtained lattice constants and bulk modulus agree well with the available experimental and other theoretical data. The pressure dependences of normalized lattice parameters a/a0 and c/c0, ratio c/a, and normalized primitive volume V/V0 of Ce2O3 are obtained. Moreover, the pressure dependences of elastic properties and three anisotropies of elastic waves of Ce2O3 are investigated for the first time. We find that the negative value of C44 is indicative of the structural instability of the hexagonal structure Ce2O3 at zero temperature and 30 GPa. Finally, the density of states (DOS) of Ce2O3 under pressure is investigated.
|
Keywords
elastic properties
high pressure
density functional theory
Ce2O3
China Dark matter EXperiment (CDEX)
dark matter
poit-contact germanium detector
China Jinping underground Laboratory (CJPL)
|
Corresponding Author(s):
Cheng Yan,Email:cheng@scu.edu.cn
|
Issue Date: 01 August 2013
|
|
1 |
A. Trovarelli, Catalysis by Ceria and Related Materials, London: Imperial College Press, 2002
|
1 |
F. Zwicky, On the masses of nebulae and of clusters of nebulae, Astrophys. J. , 1937, 86: 217 doi: 10.1086/143864
|
2 |
M. Kobayashi, and M. Ishii, Excellent radiation-resistivity of cerium-doped gadolinium silicate scintillators, Nucl. Instrum. Methods B , 1991, 61(4): 491 doi: 10.1016/0168-583X(91)95327-A
|
2 |
V. Rubin and W. K. J. Ford, Rotation of the Andromeda nebula from a spectroscopic survey of emission regions, Astrophys. J. , 1970, 159: 379 doi: 10.1086/150317
|
3 |
H. Kleykamp, The chemical state of the fission products in oxide fuels, J. Nucl. Mater. , 1985, 131(2-3): 221 doi: 10.1016/0022-3115(85)90460-X
|
3 |
V. Rubin, W. K. J. Ford, and N. Thonnard, Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 /R= 4 kpc/ to UGC 2885 /R= 122 kpc/, Astrophys. J. , 1980, 238: 471 doi: 10.1086/158003
|
4 |
J. Graciani, A. M. M’arquez, J. J. Plata, Y. Ortega, N. C. Hern’andez, A. Meyer, C. M. Zicovich-Wilson, and J. F. Sanz, Comparative study on the performance of hybrid DFT functionals in highly correlated oxides: The case of CeO2 and Ce2O3, J. Chem. Theory Comput. , 2011, 7(1): 56 doi: 10.1021/ct100430q
|
4 |
V. Rubin, D. Burstein, W. K. J. Ford, and N. Thonnard, Rotation velocities of 16 SA galaxies and a comparison of Sa, Sb, and SC rotation properties, Astrophys. J. , 1985, 289: 81 doi: 10.1086/162866
|
5 |
T. Yamamoto, H. Momida, T. Hamada, T. Uda, and T. Ohno, First-principles study of dielectric properties of cerium oxide, Thin Solid Films , 2005, 486(1–2): 136 doi: 10.1016/j.tsf.2004.11.240
|
5 |
D. Clowe, M. Bradac, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones, and D. Zaritsky, A direct empirical proof of the existence of dark matter, Astrophys. J. , 2006, 648(2): L109 doi: 10.1086/508162
|
6 |
O. L. Anderson, A simplified method for calculating the debye temperature from elastic constants, J. Phys. Chem. Solids , 1963, 24(7): 909 doi: 10.1016/0022-3697(63)90067-2
|
6 |
J. Beringer, . [Particle Data Group], The review of particle physics, Phys. Rev. D , 2012, 86: 010001 doi: 10.1103/PhysRevD.86.010001
|
7 |
A. I. Shelykh, A. V. Prokofiev, and B. T. Melekh, Fiz. Tverd. Tela, 1996, 38: 91
|
7 |
Planck Collaboration, Planck 2013 results. XVI. Cosmological parameters , arXiv: 1303.5076v1 , 2013
|
8 |
A. V. Prokofiev, A. I. Shelykh, and B. T. Melekh, Periodicity in the band gap variation of Ln2X3 (X= O, S, Se) in the lanthanide series, J. Alloy. Comp. , 1996, 242(1–2): 41 doi: 10.1016/0925-8388(96)02293-1
|
8 |
V. Trimble, Existence and nature of dark matter in the universe, Annu. Rev. Astron. Astrophys. , 1987, 25(1): 425 doi: 10.1146/annurev.aa.25.090187.002233
|
9 |
V. I. Anisimov, J. Zaanen, and O. K. Andersen, Band theory and Mott insulators: Hubbard U instead of Stoner I, Phys. Rev. B , 1991, 44(3): 943 doi: 10.1103/PhysRevB.44.943
|
9 |
G. Jungman, M. Kamionkowski, and K. Griest, Supersymmetric dark matter, Phys. Rep. , 1996, 267(5–6): 195 doi: 10.1016/0370-1573(95)00058-5
|
10 |
D. A. Andersson, S. I. Simak, B. Johansson, I. A. Abrikosov, and N. V. Skorodumova, Modeling of CeO2, Ce2O3, and CeO2txin the LDA+U formalism, Phys. Rev. B , 2007, 75(3): 0351 09 doi: 10.1103/PhysRevB.75.035109
|
10 |
L. Bergstrom, Dark matter candidates, New J. Phys. , 2009, 11(10): 105006 doi: 10.1088/1367-2630/11/10/105006
|
11 |
C. Loschen, J. Carrasco, K. M. Neyman, and F. Illas, Firstprinciples LDA+U and GGA+U study of cerium oxides: Dependence on the effective U parameter, Phys. Rev. B , 2007, 75(3): 0351 15 doi: 10.1103/PhysRevB.75.035115
|
11 |
J. L. Feng, Dark matter candidates from particle physics and methods of detection, arXiv: 1003.0904 , 2010
|
12 |
J. L. F. Da Silva, Stability of the Ce2O3 phases: A DFT+U investigation, Phys. Rev. B , 2007, 76(19): 193108 doi: 10.1103/PhysRevB.76.193108
|
12 |
R. J. Gaitskell, Direct detection of dark matter, Ann. Rev. Nucl. Part. Sci. , 2004, 54(1): 315 doi: 10.1146/annurev.nucl.54.070103.181244
|
13 |
L. V. Pourovskii, B. Amadon, S. Biermann, and A. Georges, Self-consistency over the charge density in dynamical meanfield theory: A linear muffin-tin implementation and some physical implications, Phys. Rev. B , 2007, 76(23): 235101
|
13 |
X.G. He, H. C. Tsai, T. Li, and X. Q. Li, Scalar darkmatter effects in Higgs and top quark decays, Mod. Phys. Lett. A , 2007, 22(25n28): 2121
|
14 |
B. Amadon, A self-consistent DFT+ DMFT scheme in the projector augmented wave method: applications to cerium, Ce2O3 and Pu2O3 with the Hubbard I solver and comparison to DFT+ U, J. Phys.: Condens. Matter , 2012, 24(7): 0756 04
|
14 |
X. He, T. Li, X. Q. Li, J. Tandean, and H. C. Tsai, Constraints on scalar dark matter from direct experimental searches, Phys. Rev. D , 2009, 79(2): 023521 doi: 10.1103/PhysRevD.79.023521
|
15 |
H. Jiang, R. I. Gomez-Abal, P. Rinke, and M. Scheffler, Localized and itinerant states in lanthanide oxides united by GW@LDA+U, Phys. Rev. Lett. , 2009, 102(12): 126403
|
15 |
Beylyaev, M. T. Frandsen, S. Sarkar, and F. Sannino, Mixed dark matter from Technicolor, Phys. Rev. D , 2011, 83(1): 015007, and the references therein doi: 10.1103/PhysRevD.83.015007
|
16 |
P. J. Hay, R. L. Martin, J. Uddin, and G. E. Scuseria, Theoretical study of CeO2 and Ce2O3 using a screened hybrid density functional, J. Chem. Phys. , 2006, 125(3): 0347 12
|
16 |
H. P. An, S. L. Chen, R. N. Mohapatra, S. Nussinov, and Y. Zhang, Energy dependence of direct detection cross-section for asymmetric mirror dark matter, Phys. Rev. D , 2010, 82: 023533, arXiv: 1004.3296
|
17 |
A. D. Becke, A new mixing of Hartree–Fock and local density-functional theories, J. Chem. Phys. , 1993, 98(2): 1372
|
17 |
J.-W. Cui, H.-J. He, L.-C. Lu, and F.-R. Yin, Spontaneous mirror parity violation, common origin of matter and dark matter, and the LHC Signatures, Phys. Rev. D , 2012, 85: 096003, arXiv: 1110.6893
|
18 |
M. Gilloz, A. von Manteuffel, P. Schwaller, and D. Wyler, The little skyrmion: new dark matter for little Higgs models, J. High Energy Phys. , 2011, 1103: 48, and references therein, arXiv: 1012.5288v2
|
19 |
M. C. Payne, M. P. Teter, D. C. Allen, T. A. Arias, and J. D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients, Rev. Mod. Phys. , 1992, 64(4): 1045
|
19 |
J. Lavalle, J. M. Alimi, and A. Fu?zfa, Cosmic ray positron excess: Is the dark matter solution a good bet? AIP Conf. Proc. , 2010, 24: 398
|
20 |
V. Milman, B. Winkler, J. A. White, C. J. Packard, M. C. Payne, E. V. Akhmatskaya, and R. H. Nobes, Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study, Int. J. Quantum Chem. , 2000, 77(5): 895
|
20 |
R. Yang, J. Chang, and J. Wu, A possible explanation for the electron/positron excess of ATIC/PAMELA, Res. Astro. Astrophys. , 2010, 10(1): 39, and references therein
|
21 |
S. H. Vosko, L. Wilk, and M. Nusair, Accurate spindependent electron liquid correlation energies for local spin density calculations: A critical analysis, Can. J. Phys. , 1980, 58(8): 1200
|
21 |
M. Amenomori, . [Tibet AS-gamma Collaboration], Cosmic-ray energy spectrum around the knee observed with the Tibet air-shower experiment, Astrophys. Space Sci. Trans. , 2011, 7(1): 15
|
22 |
H. J. Monkhorst and J. D. Pack, Special points for Brillouinzone integrations, Phys. Rev. B , 1976, 13(12): 5188
|
22 |
M. Aguilar, . [AMS Collaboration], First result from the alpha magnetic spectrometer on the international space station: Precision measurement of the positron fraction in primary cosmic rays of 0.5–350 GeV, Phys. Rev. Lett. , 2013, 110(14): 141102
|
23 |
D. C.Wallace, Thermodynamics of Crystals, New York: Wiley, 1972
|
23 |
K. Bernabei, P. Belli, F. Cappella, R. Cerulli, C. J. Dai, A. d’ngelo, H. L. He, A. Incicchitti, H. H. Kuang, J. M. Ma, F. Montecchia, F. Nozzoli, D. Prosperi, X. D. Sheng, and Z. P. Ye, First results from DAMA/LIBRA and the combined results with DAMA/NaI, Eur. Phys. J. C , 2008, 56(3): 333
|
24 |
W. Voigt, Lehrbuch der Kristallphysik, Leipzig: Taubner, 1928
|
24 |
K. Bernabei, P. Belli, F. Cappella, R. Cerulli, C. J. Dai, A. d’ngelo, H. L. He, A. Incicchitti, H. H. Kuang, X. H. Ma, F. Montecchia, F. Nozzoli, D. Prosperi, X. D. Sheng, R. G. Wang, and Z. P. Ye, New results from DAMA/LIBRA, Eur. Phys. J. C , 2010, 67(1–2): 39
|
25 |
A. Reuss, Berechnung der Flieβgrenze von Mischkristallen auf Grund der Plastizit?tsbedingung für Einkristalle, Z. Angew. Math. Mech. , 1929, 9(1): 49
|
25 |
C. Aalseth, P. S. Barbeau, N. S. Bowden, B. Cabrera Palmer, , Results from a search for light-mass dark matter with a p-type point contact germanium detector, Phys. Rev. Lett. , 2011, 106(13): 131301
|
26 |
K. B. Panda, and K. S. Ravi Chandran, Determination of elastic constants of titanium diboride (TiB2) from first principles using FLAPW implementation of the density functional theory, Comput. Mater. Sci. , 2006, 35(2): 134 doi: 10.1016/j.commatsci.2005.03.012
|
26 |
P. Brink, Z. Ahmed, D. S. Akerib, C. N. Bailey, , The cryogenic dark matter search (CDMS): Present status and future, AIP Conf. Proc. , 2009, 1182: 260 doi: 10.1063/1.3293795
|
27 |
Y. J. Hao, X. R. Chen, H. L. Cui, and Y. L. Bai, Firstprinciples calculations of elastic constants of c-BN, Physica B , 2006, 382(1–2): 118 doi: 10.1016/j.physb.2006.02.005
|
27 |
G. Angloher, . [CRESST Collaboration], Results from 730 kg days of the CRESST-II dark matter search, arXiv: 1109.0702 , 2011
|
28 |
Z. L. Liu, X. R. Chen, and Y. L. Wang, First-principles calculations of elastic properties of LiBC, Physica B , 2006, 381(1–2): 139 doi: 10.1016/j.physb.2005.12.264
|
28 |
J. Angle, . [XENON10 Collaboration], Search for light dark matter in XENON10 data, Phys. Rev. Lett. , 2011, 107: 051301 doi: 10.1103/PhysRevLett.107.051301 pmid:21867059
|
29 |
X. F. Li, G. F. Ji, F. Zhao, X. R. Chen, and D. Alfè, Firstprinciples calculations of elastic and electronic properties of NbB2 under pressure, J. Phys.: Condens. Matter , 2009, 21(2): 0255 05 doi: 10.1088/0953-8984/21/2/025505
|
29 |
R. Agnese, . [CDMS Collaboration], Dark matter search results using the silicon detectors of CDMS II, arXiv: 1304.4279v2, 2013
|
30 |
X. L. Yuan, D. Q. Wei, Y. Cheng, G. F. Ji, Q. M. Zhang, and Z. Z. Gong, Pressure effects on elastic and thermodynamic properties of Zr3Al intermetallic compound, Comput. Mater. Sci. , 2012, 58: 125 doi: 10.1016/j.commatsci.2012.02.019
|
30 |
M. T. Frandsen, F. Kahlhoefer, C. McCabe, S. Sarkar, and K. Schmidt-Hoberg, The unbearable lightness of being: CDMS versus XENON, arXiv: 1304.6066v1 , 2013
|
31 |
P. Wang, C. G. Piao, R. Y. Meng, Y. Cheng, and G. F. Ji, Elastic and electronic properties of YNi2B2C under pressure from first principles, Physica B , 2012, 407: 227 doi: 10.1016/j.physb.2011.10.035
|
31 |
X. G. He and J. Tandean, Low-mass dark-matter hint from CDMS II, Higgs boson at LHC, and Darkon models, arXiv: 1304.6058v1 , 2013
|
32 |
P. Wang, Y. Cheng, X. H. Zhu, X. R. Chen, and G. F. Ji, First principles investigations on elastic and electronic properties of BaHfN2 under pressure, J. Alloy. Comp. , 2012, 526:74 doi: 10.1016/j.jallcom.2012.02.118
|
32 |
E. Aprile, . [XENON100 Collaboration], Dark matter results from 225 live days of XENON100 data, arXiv: 1207.5988v2 , 2013
|
33 |
H. Barnighausen and G. Schiller, The crystal structure of A-Ce2O3, J. Less Common Met. , 1985, 110(1–2): 385 doi: 10.1016/0022-5088(85)90347-9
|
33 |
J. Angle, . [XENON Collaboration], Limits on spin-dependent WIMP-nucleon cross-sections from the XENON10 experiment, Phys. Rev. Lett. , 2008, 101(9): 091301 doi: 10.1103/PhysRevLett.101.091301
|
34 |
F. Birch, Finite elastic strain of cubic crystals, Phys. Rev. , 1947, 71(11): 809 doi: 10.1103/PhysRev.71.809
|
34 |
M. T. Ressell, M. Aufderheide, S. Bloom, K. Griest, G. Mathews, and D. Resler, Nuclear shell model calculations of neutralino-nucleus cross-sections for 29Si and 73Ge, Phys. Rev. D , 1993, 48(12): 5519 doi: 10.1103/PhysRevD.48.5519 pmid:10016218
|
35 |
G. V. Sin’ko and N. A. Smirnov, Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure, J. Phys.: Condens. Matter , 2002, 14(29): 6989 doi: 10.1088/0953-8984/14/29/301
|
35 |
G. Griest, Cross-sections, relic abundance, and detection rates for neutralino dark matter, Phys. Rev. D , 1988, 15(8): 2357 doi: 10.1103/PhysRevD.38.2357
|
36 |
S. F. Pugh, Philos. Mag. , 1954, 45: 833
|
36 |
C. L. Shan, Effects of residue background events in direct dark matter detection experiments on the estimation of the spin-independent WIMP-nucleon coupling, arXiv: 1103.4049v2 , 2011
|
37 |
M. A. Auld, Acoustic Fields and Waves in Solids, Vol. I, New York: Wiley, 1973
|
37 |
C. L. Shan, Estimating the spin-independent WIMP-nucleon coupling from direct dark matter detection data, arXiv: 1103.0481v2 , 2011
|
38 |
G. Steinle-Neumann, L. Stixrude, and R. E. Cohen, Firstprinciples elastic constants for the hcp transition metals Fe, Co, and Re at high pressure, Phys. Rev. B , 1999, 60(2): 791 doi: 10.1103/PhysRevB.60.791
|
38 |
V. Barger, W.-Y. Keung, and G. Shaughnessy, Spin dependence of dark matter scattering, Phys. Rev. D , 2008, 78: 056007, arXiv: 0806.1962 doi: 10.1103/PhysRevD.78.056007
|
39 |
M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Oxford: Clarendon, 1954
|
39 |
Y. Tzeng and T. T. S. Kuo, Dark matter-nucleus scattering, 14th International Conference on Particles and Nuclei (PANIC 96): C96-05-22, 479
|
41 |
M. T. Ressell and D. J. Dean, Spin-dependent neutralinonucleus scattering for A127 nuclei, Phys. Rev. C , 1997, 56(1): 535 doi: 10.1103/PhysRevC.56.535
|
42 |
J. Engel, S. Pittel, and P. Vogel, Nuclear physics of dark matter detection, Int. J. Mod. Phys. E , 1992, 1: 1 doi: 10.1142/S0218301392000023
|
43 |
J. Engel, Nuclear form factors for the scattering of weakly interacting massive particles, Phys. Lett. B , 1991, 264(1–2): 114 doi: 10.1016/0370-2693(91)90712-Y
|
44 |
Q. Yue, J. P. Cheng, Y. J. Li, J. Li, and Z. J. Wang, Detection of WIMPs using low threshold HPGe detector, High Energy Physics and Nuclear Physics , 2004, 28(8): 877 (in Chinese)
|
45 |
X. Li, Q. Yue, Y. J. Li, J. Li, ., Status of ULE-HPGe detector experiment for dark matter search, High Energy Physics and Nuclear Physics , 2007, 31(6): 564 (in Chinese)
|
46 |
S. T. Lin, . [TEXONO Collaboration], New limits on spin-independent and spin-dependent couplings of low-mass WIMP dark matter with a germanium detector at a threshold of 220 eV, Phys. Rev. D , 2009, 79(6): 061101(R) doi: 10.1103/PhysRevD.79.061101
|
48 |
C. E. Aalseth, . [CoGeNT Collaboration], Search for an annual modulation in a p-type point contact germanium dark matter detector, Phys. Rev. Lett. , 2011, 107(14): 141301 doi: 10.1103/PhysRevLett.107.141301
|
49 |
Majorana Collaboration, http://www.npl.washington.edu/ majorana/
|
50 |
GERDA Collaboration, http://www.mpi-hd.mpg.de/gerda/
|
51 |
K. J. Kang, J. P. Cheng, Y. H. Chen, Y. J. Li, M. B. Shen, S. Y. Wu, and Q. Yue, Status and prospects of a deep underground laboratory in China, J. Phys.: Conf. Ser. , 2010, 203(1): 012028 doi: 10.1088/1742-6596/203/1/012028
|
52 |
D. Normile, Chinese scientists hope to make deepest, darkest dreams come true, Science , 2009, 324(5932): 1246 doi: 10.1126/science.324_1246 pmid:19498133
|
53 |
G. Heusser, Low-radioactivity background techniques, Ann. Rev. Nucl. Part. Sci. , 1995, 45(1): 543 doi: 10.1146/annurev.ns.45.120195.002551
|
54 |
Canberra, http://www.canberra.com/
|
55 |
Chinalco Luoyang Copper Co, Ltd, http://www.lycopper.cn
|
56 |
ORTEC, http://www.ortec-online.com
|
57 |
Y. C. Wu, . [CDEX Collaboration], Measurement of cosmic ray flux in China Jinping underground laboratory, arXiv: 1305.0899 , 2013
|
58 |
Saphymo, http://saphymo.de
|
59 |
P. N. Luke, F. S. Goulding, N. W. Madden, and R. H. Pehl, Low capacitance large volume shaped-.eld germanium detector, IEEE Trans. Nucl. Sci. , 1989, 36(1): 926 doi: 10.1109/23.34577
|
60 |
P. S. Barbeau, J. I. Collar, and O. Tench, Large-mass ultralow noise germanium detectors: performance and applications in neutrino and astroparticle physics, J. Cosmol. Astropart. Phys. , 2007, 09: 009
|
61 |
AMPTEK, http://www.amptek.com
|
62 |
TEK, http://www.tek.com
|
63 |
CDMS Collaboration, http://cdms.berkeley.edu
|
64 |
XENON Collaboration, http://xenon.astro.columbia.edu
|
65 |
CRESST Collaboration, http://www.cresst.de
|
67 |
M. G. Marino, Dark matter physics with P-type pointcontact germanium detectors: Extending the physics reach of the Majorana experiment, Ph.D. Dissertation, University of Washington , 2010
|
68 |
From a talk given by J. F. Wilkerson in Tsinghua University in 2011
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|