|
|
Oblique angle deposition and its applications in plasmonics |
Yizhuo He1, Junxue Fu2, Yiping Zhao1( ) |
1. Department of Physics and Astronomy, and Nanoscale Science and Engineering Center, University of Georgia, Athens, Georgia 30602, USA; 2. Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China |
|
|
Abstract Plasmonics based on localized surface plasmon resonance (LSPR) has found many exciting applications recently. Those applications usually require a good morphological and structural control of metallic nanostructures. Oblique angle deposition (OAD) has been demonstrated as a powerful technique for various plasmonic applications due to its advantages in controlling the size, shape, and composition of metallic nanostructures. In this review, we focus on the fabrication of metallic nanostructures by OAD and their applications in plasmonics. After a brief introduction to OAD technique, recent progress of applying OAD in fabricating noble metallic nanostructures for LSPR sensing, surface-enhanced Raman scattering, surface-enhanced infrared absorption, metal-enhanced fluorescence, and metamaterials, and their corresponding properties are reviewed. The future requirements for OAD plasmonics applications are also discussed.
|
Keywords
Oblique angle deposition
glancing angle deposition
Plasmonics
localized surface plasmon resonance
surface-enhanced Raman spectroscopy
surface-enhanced infrared absorption
metal-enhanced fluorescence
metamaterial
|
Corresponding Author(s):
Zhao Yiping,Email:zhaoy@physast.uga.edu
|
Issue Date: 01 February 2014
|
|
1 |
B. Rodriguez-Gonzalez, A. Burrows, M. Watanabe, C. J. Kiely, and L. M. L.Marzan, Multishell bimetallic AuAg nanoparticles: Synthesis, structure and optical properties, J. Mater. Chem. , 2005, 15(17): 1755 doi: 10.1039/b500556f
|
2 |
M. M. Miller and A. A. Lazarides, Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment, J. Phys. Chem. B , 2005, 109(46): 21556 doi: 10.1021/jp054227y
|
3 |
C. Burda, X. B. Chen, R. Narayanan, and M. A. El-Sayed, Chemistry and properties of nanocrystals of different shapes, Chem. Rev. , 2005, 105(4): 1025 doi: 10.1021/cr030063a
|
4 |
H. X. Li and L. Rothberg, Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles, Proc. Natl. Acad. Sci. USA , 2004, 101(39): 14036 doi: 10.1073/pnas.0406115101
|
5 |
N. L. Rosi and C. A. Mirkin, Nanostructures in biodiagnostics, Chem. Rev. , 2005, 105(4): 1547 doi: 10.1021/cr030067f
|
6 |
D. Cialla, A. M?rz, R. B?hme, F. Theil, K. Weber, M. Schmitt, and J. Popp, Surface-enhanced Raman spectroscopy (SERS): Progress and trends, Anal. Bioanal. Chem. , 2012, 403(1): 27 doi: 10.1007/s00216-011-5631-x
|
7 |
P. Negri and R. A. Dluhy, Ag nanorod based surfaceenhanced Ramanspectroscopy applied to bioanalytical sensing, J. Biophotonics , 2013, 6: 20 doi: 10.1002/jbio.201200133
|
8 |
B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, SERS: Materials, applications, and the future, Mater. Today , 2012, 15(1-2): 16 doi: 10.1016/S1369-7021(12)70017-2
|
9 |
R. F. Aroca, D. J. Ross, and C. Domingo, Surface-enhanced infrared spectroscopy, Appl. Spectrosc. , 2004, 58(11): 324A doi: 10.1366/0003702042475420
|
10 |
M. Osawa, Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS), Bull. Chem. Soc. Jpn. , 1997, 70(12): 2861 doi: 10.1246/bcsj.70.2861
|
11 |
N. Bondre, Y. X. Zhang, and C. D. Geddes, Metal-enhanced fluorescence based calcium detection: Greater than 100-fold increase in signal/noise using Fluo-3 or Fluo-4 and silver nanostructures, Sens. Actuators B , 2011, 152(1): 82 doi: 10.1016/j.snb.2010.09.041
|
12 |
R. Nooney, A. Clifford, X. Leguevel, O. Stranik, C. McDonagh, and B. D. Maccraith, Enhancing the analytical performance of immunoassays that employ metal-enhanced fluorescence, Anal. Bioanal. Chem. , 2010, 396(3): 1127 doi: 10.1007/s00216-009-3357-9
|
13 |
A. I. Dragan, E. S. Bishop, J. R. Casas-Finet, R. J. Strouse, M. A. Schenerman, and C. D. Geddes, Metalenhanced PicoGreen fluorescence: Application to fast and ultra-sensitive pg/ml DNA quantitation, J. Immunol. Methods , 2010, 362(1-2): 95 doi: 10.1016/j.jim.2010.09.011
|
14 |
Y. Liu and X. Zhang, Metamaterials: A new frontier of science and technology, Chem. Soc. Rev. , 2011, 40(5): 2494 doi: 10.1039/c0cs00184h
|
15 |
T. Tanaka, Plasmonic metamaterials, IEICE Electron. Express , 2012, 9(2): 34 doi: 10.1587/elex.9.34
|
16 |
X. Z. Zhou, F. Boey, F. W. Huo, L. Huang, and H. Zhang, Chemically functionalized surface patterning, Small , 2011, 7(16): 2273 doi: 10.1002/smll.201002381
|
17 |
Z. H. Xie, W. X. Yu, T. S. Wang, H. X. Zhang, Y. Q. Fu, H. Liu, F. Y. Li, Z. W. Lu, and Q. Sun, Plasmonic nanolithography: A review, Plasmonics , 2011, 6(3): 565 doi: 10.1007/s11468-011-9237-0
|
18 |
R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, Self-assembled metal colloid monolayers: An approach to SERS substrates, Science , 1995, 267(5204): 1629 doi: 10.1126/science.267.5204.1629
|
19 |
Y. J. Liu, H. Y. Chu, and Y. P. Zhao, Silver nanorod array substrates fabricated by oblique angle deposition: Morphological, optical, and SERS characterizations, J. Phys. Chem. C , 2010, 114(18): 8176 doi: 10.1021/jp1001644
|
20 |
Y. J. Jen, A. Lakhtakia, C. W. Yu, and C. T. Lin, Vapordeposited thin films with negative real refractive index in the visible regime, Opt. Express , 2009, 17(10): 7784 doi: 10.1364/OE.17.007784
|
21 |
K. Robbie, J. C. Sit, and M. J. Brett, Advanced techniques for glancing angle deposition, J. Vac. Sci. Technol. B , 1998, 16(3): 1115 doi: 10.1116/1.590019
|
22 |
M. Kahl, E. Voges, S. Kostrewa, C. Viets, and W. Hill, Periodically structured metallic substrates for SERS, Sens. Actuators B , 1998, 51(1-3): 285 doi: 10.1016/S0925-4005(98)00219-6
|
23 |
N. A. Abu Hatab, J. M. Oran, and M. J. Sepaniak, Surfaceenhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing, ACS Nano , 2008, 2(2): 377 doi: 10.1021/nn7003487
|
24 |
V. M. Shalaev,W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, Negative index of refraction in optical metamaterials, Opt. Lett. , 2005, 30(24): 3356 doi: 10.1364/OL.30.003356
|
25 |
S. M. Xiao, U. K. Chettiar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, Yellow-light negative-index metamaterials, Opt. Lett. , 2009, 34(22): 3478 doi: 10.1364/OL.34.003478
|
26 |
J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays, J. Phys. Chem. B , 1999, 103(19): 3854 doi: 10.1021/jp9904771
|
27 |
C. L. Haynes and R. P. Van Duyne, Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics, J. Phys. Chem. B , 2001, 105(24): 5599 doi: 10.1021/jp010657m
|
28 |
A. D. Ormonde, E. C. M. Hicks, J. Castillo, and R. P. Van Duyne, Nanosphere lithography: Fabrication of large-area Ag nanoparticle arrays by convective self-assembly and their characterization by scanning UV-visible extinction spectroscopy, Langmuir , 2004, 20(16): 6927 doi: 10.1021/la0494674
|
29 |
L. Abelmann and C. Lodder, Oblique evaporation and surface diffusion, Thin Solid Films , 1997, 305(1-2): 1 doi: 10.1016/S0040-6090(97)00095-3
|
30 |
H. Vankranenburg and C. Lodder, Tailoring growth and local composition by oblique-incidence deposition: A review and new experimental data, Mater. Sci. Eng. R , 1994, 11(7): 295 doi: 10.1016/0927-796X(94)90021-3
|
31 |
K. Robbie and M. J. Brett, Sculptured thin films and glancing angle deposition: Growth mechanics and applications, J. Vac. Sci. Technol. A , 1997, 15(3): 1460 doi: 10.1116/1.580562
|
32 |
Y. P. Zhao, D. X. Ye, G. C. Wang, and T. M. Lu, Novel nano-column and nano-flower arrays by glancing angle deposition, Nano Lett. , 2002, 2(4): 351 doi: 10.1021/nl0157041
|
33 |
Y. P. He and Y. P. Zhao, Advanced multi-component nanostructures designed by dynamic shadowing growth, Nanoscale , 2011, 3(6): 2361 doi: 10.1039/c1nr10103j
|
34 |
J. X. Fu, Y. P. He, and Y. P. Zhao, Fabrication of heteronanorod structures by dynamic shadowing growth, IEEE Sens. J. , 2008, 8(6): 989 doi: 10.1109/JSEN.2008.923939
|
35 |
Y. P. He, Z. Y. Zhang, C. Hoffmann, and Y. P. Zhao, Embedding Ag nanoparticles into MgF2 nanorod arrays, Adv. Funct. Mater. , 2008, 18(11): 1676 doi: 10.1002/adfm.200800065
|
36 |
Y. P. He, Y. P. Zhao, and J. S. Wu, The effect of Ti doping on the growth of Mg nanostructures by oblique angle codeposition, Appl. Phys. Lett. , 2008, 92(6): 063107 doi: 10.1063/1.2844852
|
37 |
Y. P. He, C. Brown, C. A. Lundgren, and Y. P. Zhao, The growth of CuSi composite nanorod arrays by oblique angle co-deposition, and their structural, electrical and optical properties, Nanotechnology , 2012, 23(36): 365703 doi: 10.1088/0957-4484/23/36/365703
|
38 |
G. K. Larsen, R. Fitzmorris, J. Z. Zhang, and Y. P. Zhao, Structural, optical, and photocatalytic properties of Cr:TiO2 nanorod array fabricated by oblique angle codeposition, J. Phys. Chem. C , 2011, 115(34): 16892 doi: 10.1021/jp205197f
|
39 |
G. K. Larsen, B. C. Fitzmorris, C. Longo, J. Z. Zhang, and Y. P. Zhao, Nanostructured homogenous CdSe-TiO2 composite visible light photoanodes fabricated by oblique angle codeposition, J. Mater. Chem. , 2012, 22(28): 14205 doi: 10.1039/c2jm32551a
|
40 |
Y. P. He, J. S. Wu, and Y. P. Zhao, Designing catalytic nanomotors by dynamic shadowing growth, Nano Lett. , 2007, 7(5): 1369 doi: 10.1021/nl070461j
|
41 |
Y. P. He, J. X. Fu, Y. Zhang, Y. P. Zhao, L. J. Zhang, A. L. Xia, and J. W. Cai, Multilayered Si/Ni nanosprings and their magnetic properties, Small , 2007, 3(1): 153 doi: 10.1002/smll.200600375
|
42 |
W. Smith and Y. P. Zhao, Enhanced photocatalytic activity by aligned WO3/TiO2 two-layer nanorod arrays, J. Phys. Chem. C , 2008, 112(49): 19635 doi: 10.1021/jp807703d
|
43 |
W. Smith and Y. P. Zhao, Superior photocatalytic performance by vertically aligned core-shell TiO2/WO3 nanorod arrays, Catal. Commun. , 2009, 10(7): 1117 doi: 10.1016/j.catcom.2009.01.010
|
44 |
R. Gupta, M. J. Dyer, and W. A. Weimer, Preparation and characterization of surface plasmon resonance tunable gold and silver films, J. Appl. Phys. , 2002, 92(9): 5264 doi: 10.1063/1.1511275
|
45 |
J. X. Fu, A. Collins, and Y. P. Zhao, Optical properties and biosensor application of ultrathin silver films prepared by oblique angle deposition, J. Phys. Chem. C , 2008, 112(43): 16784 doi: 10.1021/jp802909g
|
46 |
J. X. Fu and Y. P. Zhao, Au nanoparticle based localized surface plasmon resonance substrates fabricated by dynamic shadowing growth, Nanotechnology , 2010, 21(17): 175303 doi: 10.1088/0957-4484/21/17/175303
|
47 |
D. A. Gish, F. Nsiah, M. T. McDermott, and M. J. Brett, Localized surface plasmon resonance biosensor using silver nanostructures fabricated by glancing angle deposition, Anal. Chem. , 2007, 79(11): 4228 doi: 10.1021/ac0622274
|
48 |
D. R. H.Craig and F. Bohren, Absorption and scattering of light by small particles, New York: Wiley, 1983
|
49 |
U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Berlin: Springer, 1995 doi: 10.1007/978-3-662-09109-8
|
50 |
J. D. Driskell, S. Shanmukh, Y. Liu, S. B. Chaney, X. J. Tang, Y. P. Zhao, and R. A. Dluhy, The use of aligned silver nanorod arrays prepared by oblique angle deposition as surface enhanced raman scattering substrates, J. Phys. Chem. C , 2008, 112(4): 895 doi: 10.1021/jp075288u
|
51 |
Q. Zhou, Y. He, J. Abell, Z. Zhang, and Y. Zhao, Surfaceenhanced Raman scattering from helical silver nanorod arrays, Chem. Commun. , 2011, 47(15): 4466 doi: 10.1039/c0cc05465h
|
52 |
Q. Zhou, Y. He, J. Abell, Z. Zhang, and Y. Zhao, Optical properties and surface enhanced raman scattering of L-shaped silver nanorod arrays, J. Phys. Chem. C , 2011, 115(29): 14131 doi: 10.1021/jp204389v
|
53 |
J. P. Singh, T. E. Lanier, H. Zhu, W. M. Dennis, R. A. Tripp, and Y. Zhao, Highly sensitive and transparent surface enhanced Raman scattering substrates made by active coldly condensed Ag nanorod arrays, J. Phys. Chem. C , 2012, 116(38): 20550 doi: 10.1021/jp305061s
|
54 |
Q. Zhou, X. Zhang, Y. Huang, Z. Li, Y. Zhao, and Z. Zhang, Enhanced surface-enhanced Raman scattering performance by folding silver nanorods, Appl. Phys. Lett. , 2012, 100(11): 113101 doi: 10.1063/1.3694056
|
55 |
S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y. P. Zhao, Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates, Appl. Phys. Lett. , 2005, 87(3): 031908 doi: 10.1063/1.1988980
|
56 |
C. L. Leverette, S. A. Jacobs, S. Shanmukh, S. B. Chaney, R. A. Dluhy, and Y. P. Zhao, Aligned silver nanorod arrays as substrates for surface-enhanced infrared absorption spectroscopy, Appl. Spectrosc. , 2006, 60(8): 906 doi: 10.1366/000370206778062084
|
57 |
J. L. Abell, J. M. Garren, and Y. P. Zhao, Dynamic rastering surface-enhanced Raman scattering (SERS) measurements on silver nanorod substrates, Appl. Spectrosc. , 2011, 65(7): 734 doi: 10.1366/11-06264
|
58 |
C. M. Ruan, G. Eres, W. Wang, Z. Y. Zhang, and B. H. Gu, Controlled fabrication of nanopillar arrays as active substrates for surface-enhanced Raman spectroscopy, Langmuir , 2007, 23(10): 5757 doi: 10.1021/la0636356
|
59 |
M. A. De Jesús, K. S. Giesfeldt, J. M. Oran, N. A. Abu-Hatab, N. V. Lavrik, and M. J. Sepaniak, Nanofabrication of densely packed metal-polymer arrays for surface-enhanced Raman spectrometry, Appl. Spectrosc. , 2005, 59(12): 1501 doi: 10.1366/000370205775142557
|
60 |
Q. Zhou, Z. Li, Y. Yang, and Z. Zhang, Arrays of aligned, single crystalline silver nanorods for trace amount detection, J. Phys. D , 2008, 41(15): 152007 doi: 10.1088/0022-3727/41/15/152007
|
61 |
L. D. Qin, S. L. Zou, C. Xue, A. Atkinson, G. C. Schatz, and C. A. Mirkin, Designing, fabricating, and imaging Raman hot spots, Proc. Natl. Acad. Sci. USA , 2006, 103(36): 13300 doi: 10.1073/pnas.0605889103
|
62 |
S. L. Kleinman, R. R. Frontiera, A. I. Henry, J. A. Dieringer, and R. P. Van Duyne, Creating, characterizing, and controlling chemistry with SERS hot spots, Phys. Chem. Chem. Phys. , 2013, 15(1): 21 doi: 10.1039/c2cp42598j
|
63 |
Y. Nishikawa, T. Nagasawa, K. Fujiwara, and M. Osawa, Silver island films for surface-enhanced infrared absorption spectroscopy: Effect of island morphology on the absorption enhancement, Vib. Spectrosc. , 1993, 6(1): 43 doi: 10.1016/0924-2031(93)87021-K
|
64 |
M. Osawa and M. Ikeda, Surface-enhanced infrared absorption of p-nitrobenzoic acid deposited on silver island films: contributions of electromagnetic and chemical mechanisms, J. Phys. Chem. , 1991, 95(24): 9914 doi: 10.1021/j100177a056
|
65 |
Y. Nishikawa, K. Fujiwara, K. Ataka, and M. Osawa, Surface-enhanced infrared external reflection spectroscopy at low reflective surfaces and its application to surface analysis of semiconductors, glasses, and polymers, Anal. Chem. , 1993, 65(5): 556 doi: 10.1021/ac00053a011
|
66 |
J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. A. Zhang, R. Badugu, and J. Huang, Advances in surfaceenhanced fluorescence, J. Fluoresc. , 2004, 14(4): 425 doi: 10.1023/B:JOFL.0000031824.48401.5c
|
67 |
I. Abdulhalim, A. Karabchevsky, C. Patzig, B. Rauschenbach, B. Fuhrmann, E. Eltzov, R. Marks, J. Xu, F. Zhang, and A. Lakhtakia, Surface-enhanced fluorescence from metal sculptured thin films with application to biosensing in water, Appl. Phys. Lett. , 2009, 94(6): 063106 doi: 10.1063/1.3081031
|
68 |
H. R. Stuart and D. G. Hall, Enhanced dipole-dipole interaction between elementary radiators near a surface, Phys. Rev. Lett. , 1998, 80(25): 5663 doi: 10.1103/PhysRevLett.80.5663
|
69 |
W. J. Padilla, D. N. Basov, and D. R. Smith, Negative refractive index metamaterials, Mater. Today , 2006, 9(7-8): 28 doi: 10.1016/S1369-7021(06)71573-5
|
70 |
J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microw. Theory Tech. , 1999, 47(11): 2075 doi: 10.1109/22.798002
|
71 |
S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J.Brueck, Experimental demonstration of near-infrared negative-index metamaterials, Phys. Rev. Lett. , 2005, 95(13): 137404 doi: 10.1103/PhysRevLett.95.137404
|
72 |
J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, Optical negative refraction in bulk metamaterials of nanowires, Science , 2008, 321(5891): 930 doi: 10.1126/science.1157566
|
73 |
Y. J. Jen, C. H. Chen, and C. W. Yu, Deposited metamaterial thin film with negative refractive index and permeability in the visible regime, Opt. Lett. , 2011, 36(6): 1014 doi: 10.1364/OL.36.001014
|
74 |
Y. J. Jen, A. Lakhtakia, C. W. Yu, and Y. H. Wang, Negative real parts of the equivalent permittivity, permeability, and refractive index of sculptured-nanorod arrays of silver, J. Vac. Sci. Technol. A , 2010, 28(5): 1078 doi: 10.1116/1.3456125
|
75 |
A. N. Lagarkov and A. K. Sarychev, Electromagnetic properties of composites containing elongated conducting inclusions, Phys. Rev. B , 1996, 53(10): 6318 doi: 10.1103/PhysRevB.53.6318
|
76 |
Y. J. Jen, A. Lakhtakia, C. W. Yu, J. J. Jhou, W. H. Wang, M. J. Lin, H. M. Wu, and H. S. Liao, Silver/silicon dioxide/ silver sandwich films in the blue-to-red spectral regime with negative-real refractive index, Appl. Phys. Lett. , 2011, 99(18): 181117 doi: 10.1063/1.3658624
|
77 |
E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, Metamaterial with negative index due to chirality, Phys. Rev. B , 2009, 79(3): 035407 doi: 10.1103/PhysRevB.79.035407
|
78 |
A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, Optical manifestations of planar chirality, Phys. Rev. Lett. , 2003, 90(10): 107404 doi: 10.1103/PhysRevLett.90.107404
|
79 |
M. Decker, M. W. Klein, M. Wegener, and S. Linden, Circular dichroism of planar chiral magnetic metamaterials, Opt. Lett. , 2007, 32(7): 856 doi: 10.1364/OL.32.000856
|
80 |
A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure, Phys. Rev. Lett. , 2006, 97(17): 177401 doi: 10.1103/PhysRevLett.97.177401
|
81 |
M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, Strong optical activity from twisted-cross photonic metamaterials, Opt. Lett. , 2009, 34(16): 2501 doi: 10.1364/OL.34.002501
|
82 |
M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, Giant optical activity in quasi-two-dimensional planar nanostructures, Phys. Rev. Lett. , 2005, 95(22): 227401 doi: 10.1103/PhysRevLett.95.227401
|
83 |
M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, Twisted split-ring-resonator photonic metamaterial with huge optical activity, Opt. Lett. , 2010, 35(10): 1593 doi: 10.1364/OL.35.001593
|
84 |
B. Gallas, K. Robbie, R. Abdedda?m, G. Guida, J. Yang, J. Rivory, and A. Priou, Silver square nanospirals mimic optical properties of U-shaped metamaterials, Opt. Express , 2010, 18(16): 16335 doi: 10.1364/OE.18.016335
|
85 |
B. Gallas, N. Guth, J. Rivory, H. Arwin, R. Magnusson, G. Guida, J. Yang, and K. Robbie, Nanostructured chiral silver thin films: A route to metamaterials at optical frequencies, Thin Solid Films , 2011, 519(9): 2650 doi: 10.1016/j.tsf.2010.12.078
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|