Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2014, Vol. 9 Issue (1) : 47-59    https://doi.org/10.1007/s11467-013-0357-1
REVIEW ARTICLE
Oblique angle deposition and its applications in plasmonics
Yizhuo He1, Junxue Fu2, Yiping Zhao1()
1. Department of Physics and Astronomy, and Nanoscale Science and Engineering Center, University of Georgia, Athens, Georgia 30602, USA; 2. Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
 Download: PDF(798 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Plasmonics based on localized surface plasmon resonance (LSPR) has found many exciting applications recently. Those applications usually require a good morphological and structural control of metallic nanostructures. Oblique angle deposition (OAD) has been demonstrated as a powerful technique for various plasmonic applications due to its advantages in controlling the size, shape, and composition of metallic nanostructures. In this review, we focus on the fabrication of metallic nanostructures by OAD and their applications in plasmonics. After a brief introduction to OAD technique, recent progress of applying OAD in fabricating noble metallic nanostructures for LSPR sensing, surface-enhanced Raman scattering, surface-enhanced infrared absorption, metal-enhanced fluorescence, and metamaterials, and their corresponding properties are reviewed. The future requirements for OAD plasmonics applications are also discussed.

Keywords Oblique angle deposition      glancing angle deposition      Plasmonics      localized surface plasmon resonance      surface-enhanced Raman spectroscopy      surface-enhanced infrared absorption      metal-enhanced fluorescence      metamaterial     
Corresponding Author(s): Zhao Yiping,Email:zhaoy@physast.uga.edu   
Issue Date: 01 February 2014
 Cite this article:   
Yizhuo He,Junxue Fu,Yiping Zhao. Oblique angle deposition and its applications in plasmonics[J]. Front. Phys. , 2014, 9(1): 47-59.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-013-0357-1
https://academic.hep.com.cn/fop/EN/Y2014/V9/I1/47
1 B. Rodriguez-Gonzalez, A. Burrows, M. Watanabe, C. J. Kiely, and L. M. L.Marzan, Multishell bimetallic AuAg nanoparticles: Synthesis, structure and optical properties, J. Mater. Chem. , 2005, 15(17): 1755
doi: 10.1039/b500556f
2 M. M. Miller and A. A. Lazarides, Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment, J. Phys. Chem. B , 2005, 109(46): 21556
doi: 10.1021/jp054227y
3 C. Burda, X. B. Chen, R. Narayanan, and M. A. El-Sayed, Chemistry and properties of nanocrystals of different shapes, Chem. Rev. , 2005, 105(4): 1025
doi: 10.1021/cr030063a
4 H. X. Li and L. Rothberg, Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles, Proc. Natl. Acad. Sci. USA , 2004, 101(39): 14036
doi: 10.1073/pnas.0406115101
5 N. L. Rosi and C. A. Mirkin, Nanostructures in biodiagnostics, Chem. Rev. , 2005, 105(4): 1547
doi: 10.1021/cr030067f
6 D. Cialla, A. M?rz, R. B?hme, F. Theil, K. Weber, M. Schmitt, and J. Popp, Surface-enhanced Raman spectroscopy (SERS): Progress and trends, Anal. Bioanal. Chem. , 2012, 403(1): 27
doi: 10.1007/s00216-011-5631-x
7 P. Negri and R. A. Dluhy, Ag nanorod based surfaceenhanced Ramanspectroscopy applied to bioanalytical sensing, J. Biophotonics , 2013, 6: 20
doi: 10.1002/jbio.201200133
8 B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, SERS: Materials, applications, and the future, Mater. Today , 2012, 15(1-2): 16
doi: 10.1016/S1369-7021(12)70017-2
9 R. F. Aroca, D. J. Ross, and C. Domingo, Surface-enhanced infrared spectroscopy, Appl. Spectrosc. , 2004, 58(11): 324A
doi: 10.1366/0003702042475420
10 M. Osawa, Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS), Bull. Chem. Soc. Jpn. , 1997, 70(12): 2861
doi: 10.1246/bcsj.70.2861
11 N. Bondre, Y. X. Zhang, and C. D. Geddes, Metal-enhanced fluorescence based calcium detection: Greater than 100-fold increase in signal/noise using Fluo-3 or Fluo-4 and silver nanostructures, Sens. Actuators B , 2011, 152(1): 82
doi: 10.1016/j.snb.2010.09.041
12 R. Nooney, A. Clifford, X. Leguevel, O. Stranik, C. McDonagh, and B. D. Maccraith, Enhancing the analytical performance of immunoassays that employ metal-enhanced fluorescence, Anal. Bioanal. Chem. , 2010, 396(3): 1127
doi: 10.1007/s00216-009-3357-9
13 A. I. Dragan, E. S. Bishop, J. R. Casas-Finet, R. J. Strouse, M. A. Schenerman, and C. D. Geddes, Metalenhanced PicoGreen fluorescence: Application to fast and ultra-sensitive pg/ml DNA quantitation, J. Immunol. Methods , 2010, 362(1-2): 95
doi: 10.1016/j.jim.2010.09.011
14 Y. Liu and X. Zhang, Metamaterials: A new frontier of science and technology, Chem. Soc. Rev. , 2011, 40(5): 2494
doi: 10.1039/c0cs00184h
15 T. Tanaka, Plasmonic metamaterials, IEICE Electron. Express , 2012, 9(2): 34
doi: 10.1587/elex.9.34
16 X. Z. Zhou, F. Boey, F. W. Huo, L. Huang, and H. Zhang, Chemically functionalized surface patterning, Small , 2011, 7(16): 2273
doi: 10.1002/smll.201002381
17 Z. H. Xie, W. X. Yu, T. S. Wang, H. X. Zhang, Y. Q. Fu, H. Liu, F. Y. Li, Z. W. Lu, and Q. Sun, Plasmonic nanolithography: A review, Plasmonics , 2011, 6(3): 565
doi: 10.1007/s11468-011-9237-0
18 R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, Self-assembled metal colloid monolayers: An approach to SERS substrates, Science , 1995, 267(5204): 1629
doi: 10.1126/science.267.5204.1629
19 Y. J. Liu, H. Y. Chu, and Y. P. Zhao, Silver nanorod array substrates fabricated by oblique angle deposition: Morphological, optical, and SERS characterizations, J. Phys. Chem. C , 2010, 114(18): 8176
doi: 10.1021/jp1001644
20 Y. J. Jen, A. Lakhtakia, C. W. Yu, and C. T. Lin, Vapordeposited thin films with negative real refractive index in the visible regime, Opt. Express , 2009, 17(10): 7784
doi: 10.1364/OE.17.007784
21 K. Robbie, J. C. Sit, and M. J. Brett, Advanced techniques for glancing angle deposition, J. Vac. Sci. Technol. B , 1998, 16(3): 1115
doi: 10.1116/1.590019
22 M. Kahl, E. Voges, S. Kostrewa, C. Viets, and W. Hill, Periodically structured metallic substrates for SERS, Sens. Actuators B , 1998, 51(1-3): 285
doi: 10.1016/S0925-4005(98)00219-6
23 N. A. Abu Hatab, J. M. Oran, and M. J. Sepaniak, Surfaceenhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing, ACS Nano , 2008, 2(2): 377
doi: 10.1021/nn7003487
24 V. M. Shalaev,W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, Negative index of refraction in optical metamaterials, Opt. Lett. , 2005, 30(24): 3356
doi: 10.1364/OL.30.003356
25 S. M. Xiao, U. K. Chettiar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, Yellow-light negative-index metamaterials, Opt. Lett. , 2009, 34(22): 3478
doi: 10.1364/OL.34.003478
26 J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays, J. Phys. Chem. B , 1999, 103(19): 3854
doi: 10.1021/jp9904771
27 C. L. Haynes and R. P. Van Duyne, Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics, J. Phys. Chem. B , 2001, 105(24): 5599
doi: 10.1021/jp010657m
28 A. D. Ormonde, E. C. M. Hicks, J. Castillo, and R. P. Van Duyne, Nanosphere lithography: Fabrication of large-area Ag nanoparticle arrays by convective self-assembly and their characterization by scanning UV-visible extinction spectroscopy, Langmuir , 2004, 20(16): 6927
doi: 10.1021/la0494674
29 L. Abelmann and C. Lodder, Oblique evaporation and surface diffusion, Thin Solid Films , 1997, 305(1-2): 1
doi: 10.1016/S0040-6090(97)00095-3
30 H. Vankranenburg and C. Lodder, Tailoring growth and local composition by oblique-incidence deposition: A review and new experimental data, Mater. Sci. Eng. R , 1994, 11(7): 295
doi: 10.1016/0927-796X(94)90021-3
31 K. Robbie and M. J. Brett, Sculptured thin films and glancing angle deposition: Growth mechanics and applications, J. Vac. Sci. Technol. A , 1997, 15(3): 1460
doi: 10.1116/1.580562
32 Y. P. Zhao, D. X. Ye, G. C. Wang, and T. M. Lu, Novel nano-column and nano-flower arrays by glancing angle deposition, Nano Lett. , 2002, 2(4): 351
doi: 10.1021/nl0157041
33 Y. P. He and Y. P. Zhao, Advanced multi-component nanostructures designed by dynamic shadowing growth, Nanoscale , 2011, 3(6): 2361
doi: 10.1039/c1nr10103j
34 J. X. Fu, Y. P. He, and Y. P. Zhao, Fabrication of heteronanorod structures by dynamic shadowing growth, IEEE Sens. J. , 2008, 8(6): 989
doi: 10.1109/JSEN.2008.923939
35 Y. P. He, Z. Y. Zhang, C. Hoffmann, and Y. P. Zhao, Embedding Ag nanoparticles into MgF2 nanorod arrays, Adv. Funct. Mater. , 2008, 18(11): 1676
doi: 10.1002/adfm.200800065
36 Y. P. He, Y. P. Zhao, and J. S. Wu, The effect of Ti doping on the growth of Mg nanostructures by oblique angle codeposition, Appl. Phys. Lett. , 2008, 92(6): 063107
doi: 10.1063/1.2844852
37 Y. P. He, C. Brown, C. A. Lundgren, and Y. P. Zhao, The growth of CuSi composite nanorod arrays by oblique angle co-deposition, and their structural, electrical and optical properties, Nanotechnology , 2012, 23(36): 365703
doi: 10.1088/0957-4484/23/36/365703
38 G. K. Larsen, R. Fitzmorris, J. Z. Zhang, and Y. P. Zhao, Structural, optical, and photocatalytic properties of Cr:TiO2 nanorod array fabricated by oblique angle codeposition, J. Phys. Chem. C , 2011, 115(34): 16892
doi: 10.1021/jp205197f
39 G. K. Larsen, B. C. Fitzmorris, C. Longo, J. Z. Zhang, and Y. P. Zhao, Nanostructured homogenous CdSe-TiO2 composite visible light photoanodes fabricated by oblique angle codeposition, J. Mater. Chem. , 2012, 22(28): 14205
doi: 10.1039/c2jm32551a
40 Y. P. He, J. S. Wu, and Y. P. Zhao, Designing catalytic nanomotors by dynamic shadowing growth, Nano Lett. , 2007, 7(5): 1369
doi: 10.1021/nl070461j
41 Y. P. He, J. X. Fu, Y. Zhang, Y. P. Zhao, L. J. Zhang, A. L. Xia, and J. W. Cai, Multilayered Si/Ni nanosprings and their magnetic properties, Small , 2007, 3(1): 153
doi: 10.1002/smll.200600375
42 W. Smith and Y. P. Zhao, Enhanced photocatalytic activity by aligned WO3/TiO2 two-layer nanorod arrays, J. Phys. Chem. C , 2008, 112(49): 19635
doi: 10.1021/jp807703d
43 W. Smith and Y. P. Zhao, Superior photocatalytic performance by vertically aligned core-shell TiO2/WO3 nanorod arrays, Catal. Commun. , 2009, 10(7): 1117
doi: 10.1016/j.catcom.2009.01.010
44 R. Gupta, M. J. Dyer, and W. A. Weimer, Preparation and characterization of surface plasmon resonance tunable gold and silver films, J. Appl. Phys. , 2002, 92(9): 5264
doi: 10.1063/1.1511275
45 J. X. Fu, A. Collins, and Y. P. Zhao, Optical properties and biosensor application of ultrathin silver films prepared by oblique angle deposition, J. Phys. Chem. C , 2008, 112(43): 16784
doi: 10.1021/jp802909g
46 J. X. Fu and Y. P. Zhao, Au nanoparticle based localized surface plasmon resonance substrates fabricated by dynamic shadowing growth, Nanotechnology , 2010, 21(17): 175303
doi: 10.1088/0957-4484/21/17/175303
47 D. A. Gish, F. Nsiah, M. T. McDermott, and M. J. Brett, Localized surface plasmon resonance biosensor using silver nanostructures fabricated by glancing angle deposition, Anal. Chem. , 2007, 79(11): 4228
doi: 10.1021/ac0622274
48 D. R. H.Craig and F. Bohren, Absorption and scattering of light by small particles, New York: Wiley, 1983
49 U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Berlin: Springer, 1995
doi: 10.1007/978-3-662-09109-8
50 J. D. Driskell, S. Shanmukh, Y. Liu, S. B. Chaney, X. J. Tang, Y. P. Zhao, and R. A. Dluhy, The use of aligned silver nanorod arrays prepared by oblique angle deposition as surface enhanced raman scattering substrates, J. Phys. Chem. C , 2008, 112(4): 895
doi: 10.1021/jp075288u
51 Q. Zhou, Y. He, J. Abell, Z. Zhang, and Y. Zhao, Surfaceenhanced Raman scattering from helical silver nanorod arrays, Chem. Commun. , 2011, 47(15): 4466
doi: 10.1039/c0cc05465h
52 Q. Zhou, Y. He, J. Abell, Z. Zhang, and Y. Zhao, Optical properties and surface enhanced raman scattering of L-shaped silver nanorod arrays, J. Phys. Chem. C , 2011, 115(29): 14131
doi: 10.1021/jp204389v
53 J. P. Singh, T. E. Lanier, H. Zhu, W. M. Dennis, R. A. Tripp, and Y. Zhao, Highly sensitive and transparent surface enhanced Raman scattering substrates made by active coldly condensed Ag nanorod arrays, J. Phys. Chem. C , 2012, 116(38): 20550
doi: 10.1021/jp305061s
54 Q. Zhou, X. Zhang, Y. Huang, Z. Li, Y. Zhao, and Z. Zhang, Enhanced surface-enhanced Raman scattering performance by folding silver nanorods, Appl. Phys. Lett. , 2012, 100(11): 113101
doi: 10.1063/1.3694056
55 S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y. P. Zhao, Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates, Appl. Phys. Lett. , 2005, 87(3): 031908
doi: 10.1063/1.1988980
56 C. L. Leverette, S. A. Jacobs, S. Shanmukh, S. B. Chaney, R. A. Dluhy, and Y. P. Zhao, Aligned silver nanorod arrays as substrates for surface-enhanced infrared absorption spectroscopy, Appl. Spectrosc. , 2006, 60(8): 906
doi: 10.1366/000370206778062084
57 J. L. Abell, J. M. Garren, and Y. P. Zhao, Dynamic rastering surface-enhanced Raman scattering (SERS) measurements on silver nanorod substrates, Appl. Spectrosc. , 2011, 65(7): 734
doi: 10.1366/11-06264
58 C. M. Ruan, G. Eres, W. Wang, Z. Y. Zhang, and B. H. Gu, Controlled fabrication of nanopillar arrays as active substrates for surface-enhanced Raman spectroscopy, Langmuir , 2007, 23(10): 5757
doi: 10.1021/la0636356
59 M. A. De Jesús, K. S. Giesfeldt, J. M. Oran, N. A. Abu-Hatab, N. V. Lavrik, and M. J. Sepaniak, Nanofabrication of densely packed metal-polymer arrays for surface-enhanced Raman spectrometry, Appl. Spectrosc. , 2005, 59(12): 1501
doi: 10.1366/000370205775142557
60 Q. Zhou, Z. Li, Y. Yang, and Z. Zhang, Arrays of aligned, single crystalline silver nanorods for trace amount detection, J. Phys. D , 2008, 41(15): 152007
doi: 10.1088/0022-3727/41/15/152007
61 L. D. Qin, S. L. Zou, C. Xue, A. Atkinson, G. C. Schatz, and C. A. Mirkin, Designing, fabricating, and imaging Raman hot spots, Proc. Natl. Acad. Sci. USA , 2006, 103(36): 13300
doi: 10.1073/pnas.0605889103
62 S. L. Kleinman, R. R. Frontiera, A. I. Henry, J. A. Dieringer, and R. P. Van Duyne, Creating, characterizing, and controlling chemistry with SERS hot spots, Phys. Chem. Chem. Phys. , 2013, 15(1): 21
doi: 10.1039/c2cp42598j
63 Y. Nishikawa, T. Nagasawa, K. Fujiwara, and M. Osawa, Silver island films for surface-enhanced infrared absorption spectroscopy: Effect of island morphology on the absorption enhancement, Vib. Spectrosc. , 1993, 6(1): 43
doi: 10.1016/0924-2031(93)87021-K
64 M. Osawa and M. Ikeda, Surface-enhanced infrared absorption of p-nitrobenzoic acid deposited on silver island films: contributions of electromagnetic and chemical mechanisms, J. Phys. Chem. , 1991, 95(24): 9914
doi: 10.1021/j100177a056
65 Y. Nishikawa, K. Fujiwara, K. Ataka, and M. Osawa, Surface-enhanced infrared external reflection spectroscopy at low reflective surfaces and its application to surface analysis of semiconductors, glasses, and polymers, Anal. Chem. , 1993, 65(5): 556
doi: 10.1021/ac00053a011
66 J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. A. Zhang, R. Badugu, and J. Huang, Advances in surfaceenhanced fluorescence, J. Fluoresc. , 2004, 14(4): 425
doi: 10.1023/B:JOFL.0000031824.48401.5c
67 I. Abdulhalim, A. Karabchevsky, C. Patzig, B. Rauschenbach, B. Fuhrmann, E. Eltzov, R. Marks, J. Xu, F. Zhang, and A. Lakhtakia, Surface-enhanced fluorescence from metal sculptured thin films with application to biosensing in water, Appl. Phys. Lett. , 2009, 94(6): 063106
doi: 10.1063/1.3081031
68 H. R. Stuart and D. G. Hall, Enhanced dipole-dipole interaction between elementary radiators near a surface, Phys. Rev. Lett. , 1998, 80(25): 5663
doi: 10.1103/PhysRevLett.80.5663
69 W. J. Padilla, D. N. Basov, and D. R. Smith, Negative refractive index metamaterials, Mater. Today , 2006, 9(7-8): 28
doi: 10.1016/S1369-7021(06)71573-5
70 J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microw. Theory Tech. , 1999, 47(11): 2075
doi: 10.1109/22.798002
71 S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J.Brueck, Experimental demonstration of near-infrared negative-index metamaterials, Phys. Rev. Lett. , 2005, 95(13): 137404
doi: 10.1103/PhysRevLett.95.137404
72 J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, Optical negative refraction in bulk metamaterials of nanowires, Science , 2008, 321(5891): 930
doi: 10.1126/science.1157566
73 Y. J. Jen, C. H. Chen, and C. W. Yu, Deposited metamaterial thin film with negative refractive index and permeability in the visible regime, Opt. Lett. , 2011, 36(6): 1014
doi: 10.1364/OL.36.001014
74 Y. J. Jen, A. Lakhtakia, C. W. Yu, and Y. H. Wang, Negative real parts of the equivalent permittivity, permeability, and refractive index of sculptured-nanorod arrays of silver, J. Vac. Sci. Technol. A , 2010, 28(5): 1078
doi: 10.1116/1.3456125
75 A. N. Lagarkov and A. K. Sarychev, Electromagnetic properties of composites containing elongated conducting inclusions, Phys. Rev. B , 1996, 53(10): 6318
doi: 10.1103/PhysRevB.53.6318
76 Y. J. Jen, A. Lakhtakia, C. W. Yu, J. J. Jhou, W. H. Wang, M. J. Lin, H. M. Wu, and H. S. Liao, Silver/silicon dioxide/ silver sandwich films in the blue-to-red spectral regime with negative-real refractive index, Appl. Phys. Lett. , 2011, 99(18): 181117
doi: 10.1063/1.3658624
77 E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, Metamaterial with negative index due to chirality, Phys. Rev. B , 2009, 79(3): 035407
doi: 10.1103/PhysRevB.79.035407
78 A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, Optical manifestations of planar chirality, Phys. Rev. Lett. , 2003, 90(10): 107404
doi: 10.1103/PhysRevLett.90.107404
79 M. Decker, M. W. Klein, M. Wegener, and S. Linden, Circular dichroism of planar chiral magnetic metamaterials, Opt. Lett. , 2007, 32(7): 856
doi: 10.1364/OL.32.000856
80 A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure, Phys. Rev. Lett. , 2006, 97(17): 177401
doi: 10.1103/PhysRevLett.97.177401
81 M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, Strong optical activity from twisted-cross photonic metamaterials, Opt. Lett. , 2009, 34(16): 2501
doi: 10.1364/OL.34.002501
82 M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, Giant optical activity in quasi-two-dimensional planar nanostructures, Phys. Rev. Lett. , 2005, 95(22): 227401
doi: 10.1103/PhysRevLett.95.227401
83 M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, Twisted split-ring-resonator photonic metamaterial with huge optical activity, Opt. Lett. , 2010, 35(10): 1593
doi: 10.1364/OL.35.001593
84 B. Gallas, K. Robbie, R. Abdedda?m, G. Guida, J. Yang, J. Rivory, and A. Priou, Silver square nanospirals mimic optical properties of U-shaped metamaterials, Opt. Express , 2010, 18(16): 16335
doi: 10.1364/OE.18.016335
85 B. Gallas, N. Guth, J. Rivory, H. Arwin, R. Magnusson, G. Guida, J. Yang, and K. Robbie, Nanostructured chiral silver thin films: A route to metamaterials at optical frequencies, Thin Solid Films , 2011, 519(9): 2650
doi: 10.1016/j.tsf.2010.12.078
[1] Ying Tian, Xufeng Jing, Haiyong Gan, Chenxia Li, Zhi Hong. Free control of far-field scattering angle of transmission terahertz wave using multilayer split-ring resonators’ metasurfaces[J]. Front. Phys. , 2020, 15(6): 62502-.
[2] Zhao-Yang Shen, He-Lin Yang, Xuan Liu, Xiao-Jun Huang, Tian-Yu Xiang, Jiong Wu, Wei Chen. Electromagnetically induced transparency in novel dual-band metamaterial excited by toroidal dipolar response[J]. Front. Phys. , 2020, 15(1): 12601-.
[3] O. de los Santos-Sánchez. Probing intensity-field correlations of single-molecule surface-enhanced Raman-scattered light[J]. Front. Phys. , 2019, 14(6): 61601-.
[4] Wen-Cheng Yue, Pei-Jun Yao, Li-Xin Xu, Hai Ming. All-dielectric bowtie waveguide with deep subwavelength mode confinement[J]. Front. Phys. , 2018, 13(4): 134207-.
[5] Yang-Yang Fu, Ya-Dong Xu, Huan-Yang Chen. Negative refraction based on purely imaginary metamaterials[J]. Front. Phys. , 2018, 13(4): 134206-.
[6] Arthur Losquin,Tom T. A. Lummen. Electron microscopy methods for space-, energy-, and time-resolved plasmonics[J]. Front. Phys. , 2017, 12(1): 127301-.
[7] Yun-Xia Dong,Jing-Jiang You. Propagation of polarized photons through a cavity with an anisotropic metamaterial[J]. Front. Phys. , 2016, 11(6): 114208-.
[8] Ting-Hua Li (李廷华),Dong-Lai Zhu(朱东来),Fu-Chun Mao(毛福春),Ming Huang(黄铭),Jing-Jing Yang(杨晶晶),Shou-Bo Li. Design of diamond-shaped transient thermal cloaks with homogeneous isotropic materials[J]. Front. Phys. , 2016, 11(5): 110503-.
[9] P. James Schuck,Wei Bao,Nicholas J. Borys. A polarizing situation: Taking an in-plane perspective for next-generation near-field studies[J]. Front. Phys. , 2016, 11(2): 117804-.
[10] Hong-Yan Liang,Hong Wei,Hong-Xing Xu. Deviating from the nanorod shape: Shape-dependent plasmonic properties of silver nanorice and nanocarrot structures[J]. Front. Phys. , 2016, 11(2): 117301-.
[11] Sanshui Xiao,Xiaolong Zhu,Bo-Hong Li,N. Asger Mortensen. Graphene-plasmon polaritons: From fundamental properties to potential applications[J]. Front. Phys. , 2016, 11(2): 117801-.
[12] Mai Takase,Satoshi Yasuda,Kei Murakoshi. Single-site surface-enhanced Raman scattering beyond spectroscopy[J]. Front. Phys. , 2016, 11(2): 117803-.
[13] Arash Ahmadivand, Saeed Golmohammadi. Fano resonances in complex plasmonic super-nanoclusters: The effect of environmental modifications on the LSPR sensitivity[J]. Front. Phys. , 2015, 10(2): 104203-.
[14] Ondrej Stranik, Jacqueline Jatschka, Andrea Csáki, Wolfgang Fritzsche. Development of new classes of plasmon active nano-structures and their application in bio-sensing and energy guiding[J]. Front. Phys. , 2014, 9(5): 652-664.
[15] Yu-Liang Zhao, Yan-Lin Song, Wei-Guo Song, Wei Liang, Xing-Yu Jiang, Zhi-Yong Tang, Hong-Xing Xu, Zhi-Xiang Wei, Yun-Qi Liu, Ming-Hua Liu, Lei Jiang, Xin-He Bao, Li-Jun Wan, Chun-Li Bai. Progress of nanoscience in China[J]. Front. Phys. , 2014, 9(3): 257-288.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed