Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2013, Vol. 8 Issue (4) : 438-450    https://doi.org/10.1007/s11467-013-0366-0
REVIEW ARTICLE
Progress in physical properties of Chinese stock markets
Yuan Liang梁源1,2, Guang Yang杨光1, Ji-Ping Huang黄吉平1()
1. Department of Physics and State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China; 2. Department of Applied Physics, College of Science, Donghua University, Shanghai 201620, China
 Download: PDF(1010 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In the past two decades, statistical physics was brought into the field of finance, applying new methods and concepts to financial time series and developing a new interdiscipline “econophysics”. In this review, we introduce several commonly used methods for stock time series in econophysics including distribution functions, correlation functions, detrended fluctuation analysis method, detrended moving average method, and multifractal analysis. Then based on these methods, we review some statistical properties of Chinese stock markets including scaling behavior, long-term correlations, cross-correlations, leverage effects, antileverage effects, and multifractality. Last, based on an agent-based model, we develop a new option pricing model — financial market model that shows a good agreement with the prices using real Shanghai Index data. This review is helpful for people to understand and research statistical physics of financial markets.

Keywords econophysics      Chinese stock market      statistical method      statistical physics     
Corresponding Author(s): Ji-Ping Huang黄吉平,Email:jphuang@fudan.edu.cn   
Issue Date: 01 August 2013
 Cite this article:   
Yuan Liang梁源,Guang Yang杨光,Ji-Ping Huang黄吉平. Progress in physical properties of Chinese stock markets[J]. Front. Phys. , 2013, 8(4): 438-450.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-013-0366-0
https://academic.hep.com.cn/fop/EN/Y2013/V8/I4/438
1 J. D. Farmer, Physicists attempt to scale the ivory towers of finance, Comput. Sci. Eng. , 1999, 1(6): 26
doi: 10.1109/5992.906615
2 B. Mandelbrot, The variation of certain speculative prices, J. Buss. , 1963, 36(4): 394
doi: 10.1086/294632
3 E. Fama, The behavior of stock-market prices, J. Buss. , 1965, 38(1): 34
doi: 10.1086/294743
4 W. X. Zhou, A Guide to Econophysics, Shanghai: Shanghai University of Finance and Economics Press, 2007 (in Chinese)
5 R. N. Mantegna and H. E. Stanley, Scaling behaviour in the dynamics of an economic index, Nature , 1995, 376(6535): 46
doi: 10.1038/376046a0
6 V. Plerou, P. Gopikrishnan, L. N. Amaral, M. Meyer, and H. E. Stanley, Scaling of the distribution of price fluctuations of individual companies, Phys. Rev. E , 1999, 60(6): 6519
doi: 10.1103/PhysRevE.60.6519 pmid:11970569
7 P. Gopikrishnan, V. Plerou, L. N. Amaral, M. Meyer, and H. E. Stanley, Scaling of the distribution of fluctuations of financial market indices, Phys. Rev. E , 1999, 60(5): 5305
doi: 10.1103/PhysRevE.60.5305 pmid:11970400
8 J. P. Bouchaud and M. Potters, Theory of Financial Risk, Cambridge: Cambridge University Press, 2000
pmid:PMC3611352
9 K. Matia, L. A. N. Amaral, S. P. Goodwin, and H. E. Stanley, Different scaling behaviors of commodity spot and future prices, Phys. Rev. E , 2002, 66(4): 045103
doi: 10.1103/PhysRevE.66.045103 pmid:12443244
10 T. Qiu, B. Zheng, F. Ren, and S. Trimper, Statistical properties of German Dax and Chinese indices, Physica A , 2007, 378(2): 387
doi: 10.1016/j.physa.2006.12.016
11 C. Yan, J. W. Zhang, Y. Zhang, and Y. N. Tang, Power-law properties of Chinese stock market, Physica A , 2005, 353: 425
doi: 10.1016/j.physa.2005.02.010
12 J. W. Zhang, Y. Zhang, and H. Kleinert, Power tails of index distributions in Chinese stock market, Physica A , 2007, 377(1): 166
doi: 10.1016/j.physa.2006.11.012
13 K. Yamasaki, L. Muchnik, S. Havlin, A. Bunde, and H. E. Stanley, Scaling and memory in volatility return intervals in financial markets, Proc. Natl. Acad. Sci. USA , 2005, 102(26): 9424
doi: 10.1073/pnas.0502613102 pmid:15980152
14 C. P. Zhu, X. T. Liu, and Z. M. Gu, Flat-head powerlaw, size-independent clustering and scaling of coevolutionary scale-free networks, Front. Phys. , 2011, 6(3): 337
doi: 10.1007/s11467-011-0145-8
15 J. L. Ma and F. T. Ma, Solitary wave solutions of nonlinear financial markets: Data-modeling-conceptpracticing, Front. Phys. China , 2007, 2(3): 368
doi: 10.1007/s11467-007-0047-y
16 W. Wan and J. W. Zhang, Long-term memory of the returns in the Chinese stock indices, Front. Phys. China , 2008, 3(4): 489
doi: 10.1007/s11467-008-0038-7
17 W. C. Zhou, H. C. Xu, Z. Y. Cai, J. R. Wei, X. Y. Zhu, W. Wang, L. Zhao, and J. P. Huang, Peculiar statistical properties of Chinese stock indices in bull and bear market phases, Physica A , 2009, 388(6): 891
doi: 10.1016/j.physa.2008.11.028
18 G. F. Gu, W. Chen, and W. X. Zhou, Empirical distributions of Chinese stock returns at different microscopic timescales, Physica A , 2008, 387(2–3): 495
doi: 10.1016/j.physa.2007.10.012
19 M. Y. Bai and H. B. Zhu, Power law and multiscaling properties of the Chinese stock market, Physica A , 2010, 389(9): 1883
doi: 10.1016/j.physa.2010.01.005
20 G. H. Mu, W. Chen, J. Kertesz, and W. X. Zhou, Preferred numbers and the distribution of trade sizes and trading volumes in the Chinese stock market, Eur. Phys. J. B , 2009, 68(1): 145
doi: 10.1140/epjb/e2009-00059-9
21 J. Shen and B. Zheng, Cross-correlation in financial dynamics, Europhys. Lett. , 2009, 86(4): 48005
doi: 10.1209/0295-5075/86/48005
22 T. Qiu, B. Zheng, F. Ren, and S. Trimper, Return-volatility correlation in financial dynamics, Phys. Rev. E , 2006, 73(6): 065103 (R)
doi: 10.1103/PhysRevE.73.065103 pmid:16906892
23 W. X. Zhou, The components of empirical multifractality in financial returns, Europhys. Lett. , 2009, 88(2): 28004
doi: 10.1209/0295-5075/88/28004
24 Y. P. Ruan and W. X. Zhou, Long-term correlations and multifractal nature in the intertrade durations of a liquid Chinese stock and its warrant, Physica A , 2011, 390(9): 1646
doi: 10.1016/j.physa.2011.01.001
25 G. H. Mu, W. X. Zhou, W. Chen, and J. Kertesz, Longterm correlations and multifractality in trading volume for Chinese stocks, Physics Procedia , 2010, 3(5): 1631
doi: 10.1016/j.phpro.2010.07.003
26 G. F. Gu and W. X. Zhou, Statistical properties of daily ensemble variables in the Chinese stock markets, Physica A , 2007, 383(2): 497
doi: 10.1016/j.physa.2007.05.007
27 T. Qiu, G. Chen, L. X. Zhong, and X. W. Lei, Memory effect and multifractality of cross-correlations in financial markets, Physica A , 2011, 390(5): 828
doi: 10.1016/j.physa.2010.11.011
28 G. X. Du and X. X. Ning, Multifractal properties of Chinese stock market in Shanghai, Physica A , 2008, 387(1): 261
doi: 10.1016/j.physa.2007.08.024
29 Y. Yuan, X. T. Zhuang, and Z. Y. Liu, Price-volume multifractal analysis and its application in Chinese stock markets, Physica A , 2012, 391(12): 3484
doi: 10.1016/j.physa.2012.01.034
30 S. P. Chen and L. Y. He, Multifractal spectrum analysis of nonlinear dynamical mechanisms in China’s agricultural futures markets, Physica A , 2010, 389(7): 1434
31 F. Ren, G. F. Gu, and W. X. Zhou, Scaling and memory in the return intervals of realized volatility, Physica A , 2009, 388(22): 4787
32 F. Ren and W. X. Zhou, Multiscaling behavior in the volatility return intervals of Chinese indices, Europhys. Lett. , 2008, 84(6): 68001
33 F. Ren, L. Guo, and W. X. Zhou, Statistical properties of volatility return intervals of Chinese stocks, Physica A , 2009, 388(6): 881
34 T. Qiu, L. X. Zhong, G. Chen, and X. R. Wu, Statistical properties of trading volume of Chinese stocks, Physica A , 2009, 388(12): 2427
35 X. Q. Sun, X. Q. Cheng, H. W. Shen, and Z. Y. Wang, Statistical properties of trading activity in Chinese stock market, Physics Procedia , 2010, 3(5): 1699
36 Z. Q. Jiang, W. Chen, and W. X. Zhou, Scaling in the distribution of intertrade durations of Chinese stocks, Physica A , 2008, 387(23): 5818
37 V. Plerou, P. Gopikrishnan, B. Rosenow, L. N. Amaral, and H. E. Stanley, Universal and nonuniversal properties of cross correlations in financial time series, Phys. Rev. Lett. , 1999, 83(7): 1471
38 P. Gopikrishnan, B. Rosenow, V. Plerou, and H. E. Stanley, Quantifying and interpreting collective behavior in financial markets, Phys. Rev. E , 2001, 64(3): 035106
39 V. Plerou, P. Gopikrishnan, B. Rosenow, L. N. Amaral, T. Guhr, and H. E. Stanley, Random matrix approach to cross correlations in financial data, Phys. Rev. E , 2002, 65(6): 066126
40 K. G. D. R. Nilantha, Ranasinghe, and P. K. C. Malmini, Eigenvalue density of cross-correlations in Sri Lankan financial market, Physica A , 2007, 378(2): 345
41 E. Alessio, A. Carbone, G. Castelli, and V. Frappietro, Second-order moving average and scaling of stochastic time series, Eur. Phys. J. B , 2002, 27(2): 197
42 S. Arianos and A. Carbone, Detrending moving average algorithm: A closed-form approximation of the scaling law, Physica A , 2007, 382(1): 9
43 A. Carbone, Detrending moving average algorithm: A brief review, in: Proceeding of Science and Technology for Humanity, IEEE Toronto International Conference , 2009: 691
44 Y. H. Shao, G. F. Gu, Z. Q. Jiang, W. X. Zhou, and D. Sornette, Comparing the performance of FA, DFA and DMA using different synthetic long-range correlated time series, Scientific Reports , 2012, 2: 835
doi: 10.1038/srep00835 pmid:23150785
45 G. F. Gu and W. X. Zhou, Detrending moving average algorithm for multifractals, Phys. Rev. E , 2010, 82(1): 011136
doi: 10.1103/PhysRevE.82.011136 pmid:20866594
46 B. Podobnik and H. E. Stanley, Detrended cross-correlation analysis: A new method for analyzing two nonstationary time series, Phys. Rev. Lett. , 2008, 100(8): 084102
doi: 10.1103/PhysRevLett.100.084102 pmid:18352624
47 S. Arianos and A. Carbone, Cross-correlation of long-range correlated series, Journal of Statistical Mechanism – Theory and Experiment , 2009: P03037
48 W. X. Zhou, Multifractal detrended cross-correlation analysis for two nonstationary signals, Phys. Rev. E , 2008, 77(6): 066211
doi: 10.1103/PhysRevE.77.066211 pmid:18643354
49 Z. Q. Jiang and W. X. Zhou, Multifractal detrending moving average cross-correlation analysis, Phys. Rev. E , 2011, 84(1): 016106
doi: 10.1103/PhysRevE.84.016106 pmid:21867256
50 L. Bachelier, Theorie de la, Paris: Gauthier-Villars, 1900
51 R. N. Mantegna and H. E. Stanley, Introduction to Econophysics: Correlations and Complexity in Finance, Cambridge: Cambridge University Press, 1999
doi: 10.1017/CBO9780511755767
52 J. P. Bouchaud and D. Sornette, The Black-Scholes option pricing problem in mathematical finance: Generalization and extensions for a large class of stochastic processes, J. Phys. I France , 1994, 4: 863
53 G. H. Mu and W. X. Zhou, Tests of nonuniversality of the stock return distributions in an emerging market, Phys. Rev. E , 2010, 82(6): 066103
doi: 10.1103/PhysRevE.82.066103 pmid:21230701
54 C. K. Peng, S. Havlin, H. E. Stanley, and A. L. Goldberger, Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series, Chaos , 1995, 5(1): 82
doi: 10.1063/1.166141 pmid:11538314
55 C. K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, and A. L. Goldberger, Mosaic organization of DNA nucleotides, Phys. Rev. E , 1994, 49(2): 1685
doi: 10.1103/PhysRevE.49.1685 pmid:9961383
56 K. Matia, Y. Ashkenazy, and H. E. Stanley, Multifractal properties of price fluctuations of stocks and commodities, Europhys. Lett. , 2003, 61(3): 422
doi: 10.1209/epl/i2003-00194-y
57 S. Ghashghaie, W. Breymann, J. Peinke, P. Talkner, and Y. Dodge, Turbulent cascades in foreign exchange markets, Nature , 1996, 381(6585): 767
doi: 10.1038/381767a0
58 R. N. Mantegna and H. E. Stanley, Turbulence and financial markets, Nature , 1996, 383(6601): 587
doi: 10.1038/383587a0
59 B. B. Mandelbrot, A multifractal walk down Wall Street, Sci. Am. , 1999, 280(2): 70
doi: 10.1038/scientificamerican0299-70
60 N. F. Johnson, P. Jefferies, and P. M. Hui, Financial Market Complexity, Oxford: Oxford University Press, s
doi: 10.1093/acprof:oso/9780198526650.001.0001
61 J. C. Hull, Options, Futures, and Other Derivatives, 7th Ed., New Jersey: Prentice Education, Inc., 2009
62 Z. Bodie, A. Kane, and A. J. Marcus, Investments, 8th Ed., US: McGraw-Hill Education, 2009
63 F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ. , 1973, 81(3): 637
doi: 10.1086/260062
64 R. C. Merton, Theory of rational option pricing, Bell J. Econ. Manage. Sci. , 1973, 4(1): 141
doi: 10.2307/3003143
65 C. H. Yeung, K. M.Wong, and Y. C. Zhang, Models of financial markets with extensive participation incentives, Phys. Rev. E , 2008, 77(2): 026107
doi: 10.1103/PhysRevE.77.026107 pmid:18352090
66 W. Wang, Y. Chen, and J. P. Huang, Heterogeneous preferences, decision-making capacity and phase transitions in a complex adaptive system, Proc. Natl. Acad. Sci. USA , 2009, 106(21): 8423
doi: 10.1073/pnas.0811782106 pmid:19435846
67 L. Zhao, G. Yang, W. Wang, Y. Chen, J. P. Huang, H. Ohashi, and H. E. Stanley, Herd behavior in a complex adaptive system, Proc. Natl. Acad. Sci. USA , 2011, 108(37): 15058
doi: 10.1073/pnas.1105239108 pmid:21876133
68 Y. Liang, K. N. An, G. Yang, and J. P. Huang, Contrarian behavior in a complex adaptive system, Phys. Rev. E , 2013, 87(1): 012809
doi: 10.1103/PhysRevE.87.012809 pmid:23410390
69 K. Y. Song, K. N. An, G. Yang, and J. P. Huang, Riskreturn relationship in a complex adaptive system, PLoS ONE , 2012, 7(3): e33588
doi: 10.1371/journal.pone.0033588 pmid:22479416
70 W. Z. Zheng, Y. Liang, and J. P. Huang, Equilibrium state and non-equilibrium steady state in an isolated human system, Front. Phys. , 2013 (in press)
doi: 10.1007/s11467-013-0337-5
71 Y. Liang and J. P. Huang, Robustness of critical points in a complex adaptive system: Effects of hedge behavior, Front. Phys. , 2013
72 D. Challet, A. Chessa, M. Marsili, and Y. C. Zhang, From minority games to real markets, Quant. Finance , 2001, 1(1): 168
doi: 10.1080/713665543
73 R. Cont and J. P. Bouchaud, Herd behavior and aggregate fluctuations in financial markets, Macroeconomic Dynamics , 2000, 4(02): 170
doi: 10.1017/S1365100500015029
74 C. H. Hommes, Modeling the stylized facts in finance through simple nonlinear adaptive systems, Proc. Natl. Acad. Sci. USA , 2002, 99(90003): 7221
doi: 10.1073/pnas.082080399 pmid:12011401
75 V. Al., M. Cristelli, L. Pietronero, and A. Zaccaria, Minimal agent based model for financial markets I, Eur. Phys. J. B , 2009, 67(3): 385
doi: 10.1140/epjb/e2009-00028-4
76 T. Lux and M. Marchesi, Scaling and criticality in a stochastic multi-agent model of a financial market, Nature , 1999, 397(6719): 498
doi: 10.1038/17290
77 S. Thurner, J. D. Farmer, and J. Geanakoplos, Leverage causes fat tails and clustered volatility, Quant. Finance , 2012, 12(5): 695
doi: 10.1080/14697688.2012.674301
78 J. Wiesinger, D. Sornette, and J. Satinover, Reverse engineering financial markets with majority and minority games using genetic algorithms, Comput. Econ. , 2013, 41(4): 475
doi: 10.1007/s10614-011-9312-9
79 S. Mike and J. D. Farmer, An empirical behavioral model of liquidity and volatility, J. Econ. Dyn. Control , 2008, 32(1): 200
doi: 10.1016/j.jedc.2007.01.025
80 G. F. Gu and W. X. Zhou, Emergence of long memory in stock volatility from a modified Mike-Farmer model, Europhys. Lett. , 2009, 86(4): 48002
doi: 10.1209/0295-5075/86/48002
81 J. R. Wei and J. P. Huang, An exotic long-term pattern in stock price dynamics, PLoS ONE , 2012, 7(12): e51666
doi: 10.1371/journal.pone.0051666 pmid:23284734
[1] Ting-Ting Chen,Bo Zheng,Yan Li,Xiong-Fei Jiang. New approaches in agent-based modeling of complex financial systems[J]. Front. Phys. , 2017, 12(6): 128905-.
[2] Chen Xin, Ji-Ping Huang. Recent progress in econophysics: Chaos, leverage, and business cycles as revealed by agent-based modeling and human experiments[J]. Front. Phys. , 2017, 12(6): 128910-.
[3] Zhi-Qiang Jiang,Yan-Hong Yang,Gang-Jin Wang,Wei-Xing Zhou. Joint multifractal analysis based on wavelet leaders[J]. Front. Phys. , 2017, 12(6): 128907-.
[4] Ruoshi Yuan, Ying Tang, Ping Ao. SDE decomposition and A-type stochastic interpretation in nonequilibrium processes[J]. Front. Phys. , 2017, 12(6): 120201-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed