|
|
Evolution of the single-mode squeezed vacuum state in amplitude dissipative channel |
Hong-Yi Fan1( ), Shuai Wang2, Li-Yun Hu3 |
1. Department of Physics, Ningbo University, Ningbo 315211, China; 2. School of Mathematics and Physics, Changzhou University, Changzhou 213164, China; 3. Department of Physics, Jiangxi Normal University, Nanchang 330022, China |
|
|
Abstract Using the way of deriving infinitive sum representation of density operator as a solution to the master equation describing the amplitude dissipative channel by virtue of the entangled state representation, we show manifestly how the initial density operator of a single-mode squeezed vacuum state evolves into a definite mixed state which turns out to be a squeezed chaotic state with decreasing-squeezing and decoherence. We investigate average photon number, photon statistics distributions for this mixed state.
|
Keywords
single-mode squeezed vacuum
decoherence
entangled state representation
sum representation
|
Corresponding Author(s):
Fan Hong-Yi,Email:fhym@nbu.edu.cn
|
Issue Date: 01 February 2014
|
|
1 |
R. Loudon, Quantum limit on the Michelson interferometer used for gravitational-wave detection, Phys. Rev. Lett. , 1981, 47(12): 815 doi: 10.1103/PhysRevLett.47.815
|
2 |
G. S. Agarwal, Engineering non-Gaussian entangled states with vortices by photon subtraction, New J. Phys. , 2011, 13(7): 073008 doi: 10.1088/1367-2630/13/7/073008
|
3 |
C. W. Gardner and P. Zoller, Quantum Noise, Springer , 2000 doi: 10.1007/978-3-662-04103-1
|
4 |
W. H. Louisell, Quantum Statistical Properties of Radiation, Wiley , 1973
|
5 |
A. Biswas and G. S. Agarwal, Nonclassicality and decoher-ence of photon-subtracted squeezed states, Phys. Rev. A , 2007, 75(3): 032104 doi: 10.1103/PhysRevA.75.032104
|
6 |
L. Y. Hu and H. Y. Fan, Statistical properties of photonsubtracted squeezed vacuum in thermal environment, J. Opt. Soc. Am. B , 2008, 25(12): 1955 doi: 10.1364/JOSAB.25.001955
|
7 |
L. Y. Hu, X. X. Xu, Z. S. Wang, and X. F. Xu, Photonsubtracted squeezed thermal state: Nonclassicality and decoherence, Phys. Rev. A , 2010, 82(4): 043842 doi: 10.1103/PhysRevA.82.043842
|
8 |
H. Y. Fan and L. Y. Hu, New approach for analyzing time evolution of density operator in dissipative channel by the entangled state representation, Opt. Commun. , 2008, 281(22): 5571 doi: 10.1016/j.optcom.2008.08.002
|
9 |
L. Y. Hu and H. Y. Fan, Time evolution of Wigner function in laser process derived by entangled state representation, Opt. Commun. , 2009, 282(22): 4379 doi: 10.1016/j.optcom.2009.08.004
|
10 |
H. Y. Fan and Y. Fan, New representation of thermal states in thermal field dynamics, Phys. Lett. A , 1998, 246(3-4): 242 doi: 10.1016/S0375-9601(98)00509-X
|
11 |
H. Y. Fan and Y. Fan, New representation fo thermo excitation and de-excitation in thermofield dynamics, Phys. Lett. A , 2001, 282(4-5): 269 doi: 10.1016/S0375-9601(01)00198-0
|
12 |
H. Y. Fan and L. Y. Hu, Operator-sum representation of density operators as solutions to master equations obtained via the entangled state approach, Mod. Phys. Lett. B , 2008, 22(25): 2435 doi: 10.1142/S0217984908017072
|
13 |
H. Y. Fan, Representation and Transformation Theory in Quantum Mechanics, Shanghai Scientific and Technical Press , 1997 (in Chinese)
|
14 |
J. R. Klauder and B. S. Skargerstam, Coherent States, Singapore: World Scientific, 1985 doi: 10.1142/0096
|
15 |
X. X. Xu, H. C. Yuan, L. Y. Hu, and H. Y. Fan, Statistical properties of a generalized photonmodulated thermal state, J. Phys. A: Math. Theor. , 2011, 44(44): 445306 doi: 10.1088/1751-8113/44/44/445306
|
16 |
E. D. Rainville, Special Functions, MacMillan Company , 1960
|
17 |
R. R. Puri, Mathematical Methods of Quantum Optics, Appendix A, Springer-Verlag , 2001 doi: 10.1007/978-3-540-44953-9
|
18 |
R. J. Glauber, The quantum theory of optical coherence, Phys. Rev. , 1963, 130(6): 2529 doi: 10.1103/PhysRev.130.2529
|
19 |
R. J. Glauber, Coherent and incoherent states of the radiation field, Phys. Rev. , 1963, 131(6): 2766 doi: 10.1103/PhysRev.131.2766
|
20 |
H. Y. Fan, L. Y. Hu, and X. X. Xu, Legendre polynomials as the normalization of photonsubtracted squeezed states, Mod. Phys. Lett. A , 2009, 24(20): 1597 doi: 10.1142/S021773230902996X
|
21 |
M. S. Kim, F. A. M.de Oliveira, and P. L. Knight, Properties of squeezed number states and squeezed thermal states, Phys. Rev. A , 1989, 40(5): 2494 doi: 10.1103/PhysRevA.40.2494
|
22 |
P. Marian, Higher-order squeezing and photon statistics for squeezed thermal states, Phys. Rev. A , 1992, 45(3): 2044 doi: 10.1103/PhysRevA.45.2044
|
23 |
H. Y. Fan and H. R. Zaidi, Application of IWOP technique to the generalizedWeyl correspondence, Phys. Lett. A , 1987, 124(6-7): 303 doi: 10.1016/0375-9601(87)90016-8
|
24 |
K. Vogel and H. Risken, Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase, Phys. Rev. A , 1989, 40(5): 2847 doi: 10.1103/PhysRevA.40.2847
|
25 |
H. Y. Fan and J. B. Niu, On the Radon transformation of Wigner function altered with various optical processes, Opt. Commun. , 2010, 283(17): 3296 doi: 10.1016/j.optcom.2010.04.043
|
26 |
H. Y. Fan and L. Y. Hu, Optical Fresnel transformation and quantum tomography, Opt. Commun. , 2009, 282(18): 3734 doi: 10.1016/j.optcom.2009.06.031
|
27 |
H. Y. Fan and L. Y. Hu, Correspondence between quantumoptical transform and classical-optical transform explored by developing Dirac’s symbolic method, Front. Phys. , 2012, 7(3): 261 doi: 10.1007/s11467-011-0206-z
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|