Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2014, Vol. 9 Issue (1) : 60-63    https://doi.org/10.1007/s11467-013-0385-x
Surface plasmon coupled fluorescence in deep-ultraviolet excitation by Kretschmann configuration
Atsushi Ono1,2,3(), Masakazu Kikawada4, Wataru Inami1,3,4, Yoshimasa Kawata1,3,4
1. Research Institute of Electronics, Shizuoka University, 3-5-1, Johoku, Naka, Hamamatsu 432-8001, Japan; 2. Department of Electronics and Materials Science, Graduate School of Engineering, Shizuoka University, 3-5-1, Johoku, Naka, Hamamatsu 432-8561, Japan; 3. CREST, Japan Science and Technology Agency, Japan; 4. Department of Mechanical Engineering, Graduate School of Engineering, Shizuoka University, 3-5-1, Johoku, Naka, Hamamatsu 432-8561, Japan
 Download: PDF(261 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We report the experimental demonstration of fluorescence of CdSe quantum dots with surface plasmon excitation in deep-ultraviolet (deep-UV) region. Surface plasmon resonance in deep-UV is excited by aluminum thin film in the Kretschmann-Raether geometry. Considering the oxidation thickness of aluminum, the experimental results of incident angle dependence of reflectance show good agreement with Fresnel theory. Surface plasmon resonance with 19 nm-thick aluminum and 5 nm-thick alumina was excited at the incident angle of 48 degrees for 266 nm excitation. Fluorescence of CdSe quantum dots coated on this aluminum film was observed by the surface plasmon excitation.

Keywords surface plasmon polarities      deep-ultraviolet light      fluorescence     
Corresponding Author(s): Ono Atsushi,Email:daono@ipc.shizuoka.ac.jp   
Issue Date: 01 February 2014
 Cite this article:   
Atsushi Ono,Masakazu Kikawada,Wataru Inami, et al. Surface plasmon coupled fluorescence in deep-ultraviolet excitation by Kretschmann configuration[J]. Front. Phys. , 2014, 9(1): 60-63.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-013-0385-x
https://academic.hep.com.cn/fop/EN/Y2014/V9/I1/60
1 H. I. Smith, Method for fabricating high frequency surface wave transducers, Rev. Sci. Instrum. , 1969, 40(5): 729
doi: 10.1063/1.1684051
2 N. Philip, B. Saoudi, M. C. Crevier, M. Moisan, J. Barbeau, and J. Pelletier, The respective roles of UV photons and oxygen atoms in plasma sterilization at reduced gas pressure: The case of N2O2 mixtures, IEEE Trans. Plasma Sci. , 2002, 30(4): 1429
doi: 10.1109/TPS.2002.804203
3 J. T. Reardon, A. F. Nichols, S. Keeney, C. A. Smith, and J. S. Taylor, Comparative analysis of binding of human damaged DNA-binding protein (XPE) and Escherichia coli damage recognition protein (UvrA) to the major ultraviolet photoproducts: T[c,s]T, T[t,s]T, T[6–4]T, and T[Dewar]T, J. Biol. Chem. , 1993, 268(28): 21301
4 H. Aoki, T. Hamamatsu, and S. Ito, Deep ultraviolet scanning near-field optical microscopy for the structural analysis of organic and biological materials, Appl. Phys. Lett. , 2004, 84(3): 356
doi: 10.1063/1.1642757
5 Y. Yang, J. M. Callahan, T.-H. Kim, A. S. Brown, and H. O. Everitt, Ultraviolet nanoplasmonics: A demonstration of surface-enhanced Raman spectroscopy, fluorescence, and photodegradation using gallium nanoparticles, Nano Lett. , 2013, 13(6): 2837
doi: 10.1021/nl401145j
6 S. K. Jha, Z. Ahmad, M. Agio, Y. Ekinci, and J. F. Loffler, Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays, J. Am. Chem. Soc. , 2012, 134(4): 1966
doi: 10.1021/ja210446w
7 T. Dorfer, M. Schmitt, and J. Popp, Deep-UV surfaceenhanced Raman scattering, J. Raman Spec. , 2007, 38(11): 1379
doi: 10.1002/jrs.1831
8 M. Sun, S. Zhang, Y. Fang, Z. Yang, D. Wu, B. Dong, and H. Xu, Near- and deep-ultraviolet resonance Raman spectroscopy of pyrazine-Al4 complex and Al3-pyrazine-Al3 junction, J. Phys. Chem. C , 2009, 113: 19328
doi: 10.1021/jp908107u
9 A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, Deep-UV tip-enhanced Raman scattering, J. Raman Spec. , 2009, 40(9): 1324
doi: 10.1002/jrs.2287
10 J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, Surface plasmon-coupled ultraviolet emission of 2,5-diphenyl-1,3,4-oxadiazole, J. Phys. Chem. B , 2004, 108(50): 19114
doi: 10.1021/jp047136u
11 Y. Watanabe, W. Inami, and Y. Kawata, Deep-ultraviolet light excites surface plasmon for the enhancement of photoelectron emission, J. Appl. Phys. , 2011, 109(2): 023112
doi: 10.1063/1.3537823
12 Y. Ekinci, H. H. Solak, and J. F. Loffler, Plasmon resonances of aluminum nanoparticles and nanorods, J. Appl. Phys. , 2008, 104(8): 083107
doi: 10.1063/1.2999370
13 K. Ray, M. H. Chowdhury, and J. R. Lakowicz, Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region, Anal. Chem. , 2007, 79(17): 6480
doi: 10.1021/ac071363l
14 C. Langhammer, M. Schwind, B. Kasemo, and I. Zori?, Localized surface plasmon resonances in aluminum nanodisks, Nano Lett. , 2008, 8(5): 1461
doi: 10.1021/nl080453i
[1] Rui-Yun Chen,Guo-Feng Zhang,Cheng-Bin Qin,Yan Gao,Lian-Tuan Xiao,Suo-Tang Jia. Modification of single molecule fluorescence using external fields[J]. Front. Phys. , 2017, 12(5): 128101-.
[2] Zhi-Guo Wang, Peng Ying, Pei-Ying Li, Hua-Yan Lan, He-Qing Huang, Hao Tian, Jian-Ping Song, Yan-Peng Zhang. Phase regulated suppression and enhancement switches of four-wave mixing and fluorescence[J]. Front. Phys. , 2014, 9(2): 153-156.
[3] Yizhuo He, Junxue Fu, Yiping Zhao. Oblique angle deposition and its applications in plasmonics[J]. Front. Phys. , 2014, 9(1): 47-59.
[4] Yuko S. Yamamoto, Mitsuru Ishikawa, Yukihiro Ozaki, Tamitake Itoh. Fundamental studies on enhancement and blinking mechanism of surface-enhanced Raman scattering (SERS) and basic applications of SERS biological sensing[J]. Front. Phys. , 2014, 9(1): 31-46.
[5] Zhen-Kun Wu, Yi-Qi Zhang, Tai-Kun Liu, Zhao-Yang Zhang, Cheng Li, Yan-Peng Zhang, Min Xiao. Coherent control of dressed images of four-wave mixing[J]. Front. Phys. , 2013, 8(2): 228-235.
[6] Yun-Chen Wang, Cheng-Yin Wu, Yuan-Xing Liu, Shao-Hua Xu, Qi-Huang Gong. Fluorescence emission from excited molecular ions in intense femtosecond laser fields[J]. Front. Phys. , 2013, 8(1): 34-38.
[7] Yue Cai, Po-Chun Chu, Sut Kam Ho, Nai-Ho Cheung. Multi-element analysis by ArF laser excited atomic fluorescence of laser ablated plumes: Mechanism and applications[J]. Front. Phys. , 2012, 7(6): 670-678.
[8] NIESNER Raluca, GERICKE Karl-Heinz. Fluorescence lifetime imaging in biosciences: technologies and applications[J]. Front. Phys. , 2008, 3(1): 88-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed