|
|
A unified dynamic scaling property for the unified hybrid network theory framework |
Qiang Liu, Jin-Qing Fang( ), Yong Li |
Department of Nuclear Technology Application, China Institute of Atomic Energy, Beijing 102413, China |
|
|
Abstract In this article, we present a new type of unified dynamic scaling property for synchronizability, which can describe the scaling relationship between dynamic synchronizability and four hybrid ratios under the unified hybrid network theory framework (UHNTF). Our theory results can not only be applied to judge and analyze dynamic synchronizability for most of complex networks associated with the UHNTF, but also we can flexibly adjust and design different hybrid ratios and scaling exponent to meet actual requirement for the dynamic characteristics of the UHNTF.
|
Keywords
dynamic scaling property
unified hybrid network theory framework (UHNTF)
synchronizability
hybrid ratios
|
Corresponding Author(s):
Fang Jin-Qing,Email:fjq96@126.com
|
Issue Date: 01 April 2014
|
|
1 |
D. J. Watts, Small Worlds: The Dynamics of Networks Between Order and Randomness, Princeton: Princeton University Press, 1999
|
2 |
L. M. Pecora and T. C. Carroll, Driving systems with chaotic signals, Phys. Rev. A , 1993, 44(4): 2374 doi: 10.1103/PhysRevA.44.2374
|
3 |
L. M. Pecora and T. C. Carroll, Master Stability functions for synchronized coupled systems, Phys. Rev. Lett. , 1998, 80(10): 2109 doi: 10.1103/PhysRevLett.80.2109
|
4 |
K. Park, L. Huang, and Y. C. Lai, Desynchronization waves in small-world networks, Phys. Rev. E , 2007, 75(2): 026211 doi: 10.1103/PhysRevE.75.026211
|
5 |
C. Y. Yin, B. H. Wang, W. X. Wang, and G. R. Chen, Geographical effect on small-world network synchronization, Phys. Rev. E , 2008, 77(2): 027102 doi: 10.1103/PhysRevE.77.027102
|
6 |
L. K. Tang, J. A. Lu, and G. R. Chen, Synchronizability of small-world networks generated from ring networks with equal-distance edge additions, Chaos , 2012, 22(2): 023121 doi: 10.1063/1.4711008
|
7 |
D. J. Watts and S. H. Strogatz, Collective dynamics of small world networks, Nature , 1998, 393: 440 doi: 10.1038/30918
|
8 |
A. L. Barabási and R. Albert, Emergence of scaling in random networks, Science , 1999, 286(5439): 509 doi: 10.1126/science.286.5439.509
|
9 |
J. H. Lü, X. H. Yu, G. R. Chen, and D. Z. Chen, Characterizing the synchronizability of small-world dynamical networks, IEEE Trans. Circuits Syst. I , 2004, 51(1): 787 doi: 10.1109/TCSI.2004.823672
|
10 |
K. Kaneko, Coupled Map Lattices, Singapore: World Scientific, 1992
|
11 |
S. C. Manrubia and S. M. Mikhailov, Mutual synchronization and clustering in randomly coupled chaotic dynamical networks, Phys. Rev. E , 1999, 60(2): 1579 doi: 10.1103/PhysRevE.60.1579
|
12 |
X. F. Wang and G. R. Chen, Synchronization in small-world dynamical networks, Int. J. Bifurcation Chaos , 2002, 12(1): 187 doi: 10.1142/S0218127402004292
|
13 |
X. F. Wang and G. R. Chen, Synchronization in scale-free dynamical networks: robustness and fragility, IEEE Trans. Circuits Syst. I , 2002, 49(1): 54 doi: 10.1109/81.974874
|
14 |
A. E. Motter, C. S. Zhou, and J. Kurths, Network synchronization, diffusion, and the paradox of heterogeneity, Phys. Rev. E , 2005, 71(1): 016116 doi: 10.1103/PhysRevE.71.016116
|
15 |
T. Zhou, M. Zhao, and B. H. Wang, Better synchronizability predicted by crossed double cycle, Phys. Rev. E , 2006, 73(3): 037101 doi: 10.1103/PhysRevE.73.037101
|
16 |
X. Wu, B. H. Wang, T. Zhou, W. X. Wang, M. Zhao, and H. J. Yang, The synchronizability of highly clustered scale-free networks, Chin. Phys. Lett. , 2006, 23(4): 1046 doi: 10.1088/0256-307X/23/4/079
|
17 |
J. Q. Fang and Y. Liang, Topological Properties and transition features generated by a new hybrid preferential model, Chin. Phys. Lett. , 2005, 22(10): 2719 doi: 10.1088/0256-307X/22/10/072
|
18 |
J. Q. Fang, Q. Bi, and Y. Li, Toward a harmonious unifying hybrid model for any evolving complex networks, Adv. Comp. Syst. , 2007, 10(2): 117 doi: 10.1142/S0219525907001045
|
19 |
J. Q. Fang, Q. Bi, Y. Li, and Q. Liu, A harmonious unifying hybrid preferential model of complex dynamic networks and its universal characteristics, Sci. China Ser. G , 2007, 37(2): 230
|
20 |
J. Q. Fang, Q. Bi, Y. Li, and Q. Liu, Sensitivity of exponents of three-power-laws to hybrid ratio in weighted HUHPM, Chin. Phys. Lett. , 2007, 24(1): 279 doi: 10.1088/0256-307X/24/1/076
|
21 |
X. B. Lu, X. F. Wang, X. Li, and J. Q. Fang, Synchronization in weighted complex networks: Heterogeneity and synchronizability, Physica A , 2006, 370(2): 381 doi: 10.1016/j.physa.2006.02.037
|
22 |
J. Q. Fang, Q. Bi, Y. Li, and Q. Liu, A harmonious unifying hybrid preferential model and its universal properties for complex dynamical networks, Sci. China Ser. G , 2007, 50(3): 379 doi: 10.1007/s11433-007-0029-7
|
23 |
Y. Li, J. Q. Fang, Q. Bi, and Q. Liu, Entropy characteristic on harmonious unifying hybrid preferential networks, Entropy , 2007, 9(2): 73 doi: 10.3390/e9020073
|
24 |
Q. Bi and J. Q Fang, Entropy and HUHPM approach for complex networks, Physica A , 2007, 383(2): 753 doi: 10.1016/j.physa.2007.05.023
|
25 |
J. Q. Fang, Q. Bi, and Y. Li, From a harmonious unifying hybrid preferential model toward a large unifying hybrid network model, Int. J. Mod. Phys. B , 2007, 21(30): 5121 doi: 10.1142/S0217979207038149
|
26 |
J. Q. Fang, Q. Bi, and Y. Li, Advances in theoretical models of network science, Front. Phys. China , 2007, 1(2): 109 doi: 10.1007/s11467-007-0006-7
|
27 |
J. Q. Fang, Exploring theoretical model of network science and research progresses, Science Technology Review , 2006, 24(12): 67 (in Chinese)
|
28 |
J. Q. Fang, Advances in the research of dynamical complexity of nonlinear network, Prog. Nat. Sci. , 2007, 17(9): 841(in Chinese)
|
29 |
J. Q. Fang, X. F. Wang, Z. G. Zheng, Z. R. Di, and Y. Fang, New interdisciplinary science: Network science (I), Prog. Phys. , 2007, 27(3): 239(in Chinese)
|
30 |
J. Q. Fang, Theoretical research progress in complexity of complex dynamical networks, Prog. Nat. Sci. , 2007, 17(7): 761(in Chinese) doi: 10.1080/10002007088537471
|
31 |
X. B. Lu, X. F. Wang, and J. Q. Fang, Topological transition features and synchronizability of a weighted hybrid preferential network, Physica A , 2006, 371(2): 841 doi: 10.1016/j.physa.2006.03.032
|
32 |
J. Q. Fang, Network complexity pyramid with five levels, Int. J. Syst. Cont. Commun. , 2009, 1(4): 453 doi: 10.1504/IJSCC.2009.026322
|
33 |
J. Q. Fang, Mastering Chaos and Developing High-Tech, Beijing: Atomic Energy Press, 2002
|
34 |
J. Q. Fang and Y. Li, Advances in unified hybrid theoretical model of network science, Adv. Mech ., 2008, 38(6): 663
|
35 |
J. Q. Fang and Y. Li, Transition features from simplicity-universality to complexity-diversification under the UHNMVSG, Commun. Theor. Phys. , 2010, 53(2): 389 doi: 10.1088/0253-6102/53/2/33
|
36 |
J. Q. Fang, Y. Li, and Q. Liu, Three Types of Network Complexity Pyramid, (book: Advances in Network Complexity), Berlin: Wiley-VCH, 2012
|
37 |
Y. Li, J. Q. Fang, Q. Liu, and Q. Bi, Exploring the characteristics of Chinese high technology industry networks, J. Univ. Shanghai Sci. Tech. , 2008, 30(3): 300(in Chinese)
|
38 |
Q. Liu, J. Q. Fang, and Y. Li, Several features of China Top-100 electronic information technology enterprise network, J. Guangxi Norm. Univ. , 2008, 26(4): 1(in Chinese)
|
39 |
J. Q. Fang, Investigating high-tech networks with four levels from developing viewpoint of network science, World Sci.-Tech. R&D , 2008, 30(5): 667(in Chinese)
|
40 |
Y. Li, J. Q. Fang, and Q. Liu, Characteristics of continuum percolation evolving network, Comp. Syst. Comp. Sci. , 2010, 7(2): 97(in Chinese)
|
41 |
Y. Li, J. Q. Fang, and Q. Liu, Global nuclear plant network and its characteristics, Atomic Energy Science and Technology , 2010, 44(9): 1139(in Chinese)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|