Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2014, Vol. 9 Issue (2) : 240-245    https://doi.org/10.1007/s11467-013-0389-6
A unified dynamic scaling property for the unified hybrid network theory framework
Qiang Liu, Jin-Qing Fang(), Yong Li
Department of Nuclear Technology Application, China Institute of Atomic Energy, Beijing 102413, China
 Download: PDF(320 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this article, we present a new type of unified dynamic scaling property for synchronizability, which can describe the scaling relationship between dynamic synchronizability and four hybrid ratios under the unified hybrid network theory framework (UHNTF). Our theory results can not only be applied to judge and analyze dynamic synchronizability for most of complex networks associated with the UHNTF, but also we can flexibly adjust and design different hybrid ratios and scaling exponent to meet actual requirement for the dynamic characteristics of the UHNTF.

Keywords dynamic scaling property      unified hybrid network theory framework (UHNTF)      synchronizability      hybrid ratios     
Corresponding Author(s): Fang Jin-Qing,Email:fjq96@126.com   
Issue Date: 01 April 2014
 Cite this article:   
Qiang Liu,Jin-Qing Fang,Yong Li. A unified dynamic scaling property for the unified hybrid network theory framework[J]. Front. Phys. , 2014, 9(2): 240-245.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-013-0389-6
https://academic.hep.com.cn/fop/EN/Y2014/V9/I2/240
1 D. J. Watts, Small Worlds: The Dynamics of Networks Between Order and Randomness, Princeton: Princeton University Press, 1999
2 L. M. Pecora and T. C. Carroll, Driving systems with chaotic signals, Phys. Rev. A , 1993, 44(4): 2374
doi: 10.1103/PhysRevA.44.2374
3 L. M. Pecora and T. C. Carroll, Master Stability functions for synchronized coupled systems, Phys. Rev. Lett. , 1998, 80(10): 2109
doi: 10.1103/PhysRevLett.80.2109
4 K. Park, L. Huang, and Y. C. Lai, Desynchronization waves in small-world networks, Phys. Rev. E , 2007, 75(2): 026211
doi: 10.1103/PhysRevE.75.026211
5 C. Y. Yin, B. H. Wang, W. X. Wang, and G. R. Chen, Geographical effect on small-world network synchronization, Phys. Rev. E , 2008, 77(2): 027102
doi: 10.1103/PhysRevE.77.027102
6 L. K. Tang, J. A. Lu, and G. R. Chen, Synchronizability of small-world networks generated from ring networks with equal-distance edge additions, Chaos , 2012, 22(2): 023121
doi: 10.1063/1.4711008
7 D. J. Watts and S. H. Strogatz, Collective dynamics of small world networks, Nature , 1998, 393: 440
doi: 10.1038/30918
8 A. L. Barabási and R. Albert, Emergence of scaling in random networks, Science , 1999, 286(5439): 509
doi: 10.1126/science.286.5439.509
9 J. H. Lü, X. H. Yu, G. R. Chen, and D. Z. Chen, Characterizing the synchronizability of small-world dynamical networks, IEEE Trans. Circuits Syst. I , 2004, 51(1): 787
doi: 10.1109/TCSI.2004.823672
10 K. Kaneko, Coupled Map Lattices, Singapore: World Scientific, 1992
11 S. C. Manrubia and S. M. Mikhailov, Mutual synchronization and clustering in randomly coupled chaotic dynamical networks, Phys. Rev. E , 1999, 60(2): 1579
doi: 10.1103/PhysRevE.60.1579
12 X. F. Wang and G. R. Chen, Synchronization in small-world dynamical networks, Int. J. Bifurcation Chaos , 2002, 12(1): 187
doi: 10.1142/S0218127402004292
13 X. F. Wang and G. R. Chen, Synchronization in scale-free dynamical networks: robustness and fragility, IEEE Trans. Circuits Syst. I , 2002, 49(1): 54
doi: 10.1109/81.974874
14 A. E. Motter, C. S. Zhou, and J. Kurths, Network synchronization, diffusion, and the paradox of heterogeneity, Phys. Rev. E , 2005, 71(1): 016116
doi: 10.1103/PhysRevE.71.016116
15 T. Zhou, M. Zhao, and B. H. Wang, Better synchronizability predicted by crossed double cycle, Phys. Rev. E , 2006, 73(3): 037101
doi: 10.1103/PhysRevE.73.037101
16 X. Wu, B. H. Wang, T. Zhou, W. X. Wang, M. Zhao, and H. J. Yang, The synchronizability of highly clustered scale-free networks, Chin. Phys. Lett. , 2006, 23(4): 1046
doi: 10.1088/0256-307X/23/4/079
17 J. Q. Fang and Y. Liang, Topological Properties and transition features generated by a new hybrid preferential model, Chin. Phys. Lett. , 2005, 22(10): 2719
doi: 10.1088/0256-307X/22/10/072
18 J. Q. Fang, Q. Bi, and Y. Li, Toward a harmonious unifying hybrid model for any evolving complex networks, Adv. Comp. Syst. , 2007, 10(2): 117
doi: 10.1142/S0219525907001045
19 J. Q. Fang, Q. Bi, Y. Li, and Q. Liu, A harmonious unifying hybrid preferential model of complex dynamic networks and its universal characteristics, Sci. China Ser. G , 2007, 37(2): 230
20 J. Q. Fang, Q. Bi, Y. Li, and Q. Liu, Sensitivity of exponents of three-power-laws to hybrid ratio in weighted HUHPM, Chin. Phys. Lett. , 2007, 24(1): 279
doi: 10.1088/0256-307X/24/1/076
21 X. B. Lu, X. F. Wang, X. Li, and J. Q. Fang, Synchronization in weighted complex networks: Heterogeneity and synchronizability, Physica A , 2006, 370(2): 381
doi: 10.1016/j.physa.2006.02.037
22 J. Q. Fang, Q. Bi, Y. Li, and Q. Liu, A harmonious unifying hybrid preferential model and its universal properties for complex dynamical networks, Sci. China Ser. G , 2007, 50(3): 379
doi: 10.1007/s11433-007-0029-7
23 Y. Li, J. Q. Fang, Q. Bi, and Q. Liu, Entropy characteristic on harmonious unifying hybrid preferential networks, Entropy , 2007, 9(2): 73
doi: 10.3390/e9020073
24 Q. Bi and J. Q Fang, Entropy and HUHPM approach for complex networks, Physica A , 2007, 383(2): 753
doi: 10.1016/j.physa.2007.05.023
25 J. Q. Fang, Q. Bi, and Y. Li, From a harmonious unifying hybrid preferential model toward a large unifying hybrid network model, Int. J. Mod. Phys. B , 2007, 21(30): 5121
doi: 10.1142/S0217979207038149
26 J. Q. Fang, Q. Bi, and Y. Li, Advances in theoretical models of network science, Front. Phys. China , 2007, 1(2): 109
doi: 10.1007/s11467-007-0006-7
27 J. Q. Fang, Exploring theoretical model of network science and research progresses, Science Technology Review , 2006, 24(12): 67 (in Chinese)
28 J. Q. Fang, Advances in the research of dynamical complexity of nonlinear network, Prog. Nat. Sci. , 2007, 17(9): 841(in Chinese)
29 J. Q. Fang, X. F. Wang, Z. G. Zheng, Z. R. Di, and Y. Fang, New interdisciplinary science: Network science (I), Prog. Phys. , 2007, 27(3): 239(in Chinese)
30 J. Q. Fang, Theoretical research progress in complexity of complex dynamical networks, Prog. Nat. Sci. , 2007, 17(7): 761(in Chinese)
doi: 10.1080/10002007088537471
31 X. B. Lu, X. F. Wang, and J. Q. Fang, Topological transition features and synchronizability of a weighted hybrid preferential network, Physica A , 2006, 371(2): 841
doi: 10.1016/j.physa.2006.03.032
32 J. Q. Fang, Network complexity pyramid with five levels, Int. J. Syst. Cont. Commun. , 2009, 1(4): 453
doi: 10.1504/IJSCC.2009.026322
33 J. Q. Fang, Mastering Chaos and Developing High-Tech, Beijing: Atomic Energy Press, 2002
34 J. Q. Fang and Y. Li, Advances in unified hybrid theoretical model of network science, Adv. Mech ., 2008, 38(6): 663
35 J. Q. Fang and Y. Li, Transition features from simplicity-universality to complexity-diversification under the UHNMVSG, Commun. Theor. Phys. , 2010, 53(2): 389
doi: 10.1088/0253-6102/53/2/33
36 J. Q. Fang, Y. Li, and Q. Liu, Three Types of Network Complexity Pyramid, (book: Advances in Network Complexity), Berlin: Wiley-VCH, 2012
37 Y. Li, J. Q. Fang, Q. Liu, and Q. Bi, Exploring the characteristics of Chinese high technology industry networks, J. Univ. Shanghai Sci. Tech. , 2008, 30(3): 300(in Chinese)
38 Q. Liu, J. Q. Fang, and Y. Li, Several features of China Top-100 electronic information technology enterprise network, J. Guangxi Norm. Univ. , 2008, 26(4): 1(in Chinese)
39 J. Q. Fang, Investigating high-tech networks with four levels from developing viewpoint of network science, World Sci.-Tech. R&D , 2008, 30(5): 667(in Chinese)
40 Y. Li, J. Q. Fang, and Q. Liu, Characteristics of continuum percolation evolving network, Comp. Syst. Comp. Sci. , 2010, 7(2): 97(in Chinese)
41 Y. Li, J. Q. Fang, and Q. Liu, Global nuclear plant network and its characteristics, Atomic Energy Science and Technology , 2010, 44(9): 1139(in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed