Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2014, Vol. 9 Issue (2) : 210-218    https://doi.org/10.1007/s11467-013-0398-5
First-principles study on the structure, electronic and magnetic properties of HoSin (n= 1–12, 20) clusters
Tai-Gang Liu1(), Wen-Qing Zhang2, Yan-Li Li3()
1. School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China; 2. School of Mechanics and Electronics, Henan Institute of Science and Technology, Xinxiang 453003, China; 3. Department of Physics, Wuhan University of Technology, Wuhan 430070, China
 Download: PDF(525 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The structure, electronic and magnetic properties of HoSin(n = 1-12, 20) clusters have been widely investigated by first-principles calculation method based on density functional theory (DFT). From our calculation results, we find that for HoSin(n = 1-12) clusters except n = 7, 10, the most stable structures are a replacement of Si atom in the corresponding pure Sin+1 clusters by Ho atom. The doping of Ho atom makes the stability of Si clusters enhance remarkably, and HoSin(n = 2, 5, 8, 11) clusters are more stable than their neighboring clusters. The magnetic moment of Ho atom in HoSin(n = 1-12, 20) clusters mainly comes from 4f electron of Ho, and never quenches.

Keywords structure      stability      electronic and magnetic properties      HoSin cluster     
Corresponding Author(s): Liu Tai-Gang,Email:liutg@xxmu.edu.cn; Li Yan-Li,Email:liyanli128@163.com   
Issue Date: 01 April 2014
 Cite this article:   
Tai-Gang Liu,Wen-Qing Zhang,Yan-Li Li. First-principles study on the structure, electronic and magnetic properties of HoSin (n= 1–12, 20) clusters[J]. Front. Phys. , 2014, 9(2): 210-218.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-013-0398-5
https://academic.hep.com.cn/fop/EN/Y2014/V9/I2/210
1 N. Uchida, T. Miyazaki, and T. Kanayama, Stabilization mechanism of Si12 cage clusters by encapsulation of a transition-metal atom: A density-functional theory study, Phys. Rev. B , 2006, 74(20): 205427
doi: 10.1103/PhysRevB.74.205427
2 M. B. Torres, E. M. Fernández, and L. C. Balbás, Theoretical study of isoelectronic SinM clusters (M=Sc-, Ti, V+; n = 14–18), Phys. Rev. B , 2007, 75(20): 205425
doi: 10.1103/PhysRevB.75.205425
3 J. Wang and J. G. Han, Geometries, stabilities, and electronic properties of different-sized ZrSin(n= 1–16) clusters: A density-functional investigation, J. Chem. Phys. , 2005, 123(6): 064306
doi: 10.1063/1.1998887
4 L. J. Guo, X. Liu, G. F. Zhao, and Y. H. Luo, Computational investigation of TiSin(n= 2–15) clusters by the densityfunctional theory, J. Chem. Phys. , 2007, 126(23): 234704
doi: 10.1063/1.2743412
5 S. M. Beck, Mixed metal–silicon clusters formed by chemical reaction in a supersonic molecular beam: Implications for reactions at the metal/silicon interface, J. Chem. Phys. , 1989, 90(11): 6306
doi: 10.1063/1.456684
6 S. M. Beck, Studies of silicon cluster–metal atom compound formation in a supersonic molecular beam, J. Chem. Phys. , 1987, 87(7): 4233
doi: 10.1063/1.452877
7 M. Ohara, K. Koyasu, A. Nakajima, and K. Kaya, Geometric and electronic structures of metal (M)-doped silicon clusters (M=Ti, Hf, Mo and W), Chem. Phys. Lett. , 2003, 371(3-4): 490
doi: 10.1016/S0009-2614(03)00299-9
8 K. Koyasu, M. Akutsu, M. Mitsui, and A. Nakajima, Selective formation of MSi16 (M= Sc, Ti, and V), J. Am. Chem. Soc. , 2005, 127(14): 4998
doi: 10.1021/ja045380t
9 J. B. Jaeger, T. D. Jaeger, and M. A. Duncan, Photodissociation of metal-silicon clusters: Encapsulated versus surfacebound metal, J. Phys. Chem. A , 2006, 110(30): 9310
doi: 10.1021/jp0629947
10 H. Hiura, T. Miyazaki, and T. Kanayama, Formation of metal-encapsulating Si cage clusters., Phys. Rev. Lett. , 2001, 86(9): 1733
doi: 10.1103/PhysRevLett.86.1733
11 J. Lu and S. Nagase, Structural and electronic properties of metal-encapsulated silicon clusters in a large size range, Phys. Rev. Lett. , 2003, 90(11): 115506
doi: 10.1103/PhysRevLett.90.115506
12 P. Sen and L. Mitas, Electronic structure and ground states of transition metals encapsulated in a Si12 hexagonal prism cage, Phys. Rev. B , 2003, 68(15): 155404
doi: 10.1103/PhysRevB.68.155404
13 J. U. Reveles and S. N. Khanna, Nearly-free-electron gas in a silicon cage, Phys. Rev. B , 2005, 72(16): 165413
doi: 10.1103/PhysRevB.72.165413
14 J. U. Reveles and S. N. Khanna, Electronic counting rules for the stability of metal-silicon clusters, Phys. Rev. B , 2006, 74(3): 035435
doi: 10.1103/PhysRevB.74.035435
16 F. C. Chuang, Y. Y. Hsieh, C. C. Hsu, and M. A. Albao, Geometries and stabilities of Ag-doped Sin(n= 1–13) clusters: A first-principles study, J. Chem. Phys. , 2007, 127(14): 144313
doi: 10.1063/1.2775447
17 F. Hagelberg, C. Xiao, and Lester, Cagelike Si12 clusters with endohedral Cu, Mo, and W metal atom impurities, Phys. Rev. B , 2003, 67(3): 035426
doi: 10.1103/PhysRevB.67.035426
18 V. Kumar and Y. Kawazoe, Magic behavior of Si15Mand Si16M(M= Cr, Mo, and W) clusters, Phys. Rev. B , 2002, 65(7): 073404
doi: 10.1103/PhysRevB.65.073404
19 L. Ma, J. Zhao, J. Wang, B. Wang, Q. Lu, and G. Wang, Growth behavior and magnetic properties of SinFe (n= 2–14) clusters, Phys. Rev. B , 2006, 73(12): 125439
doi: 10.1103/PhysRevB.73.125439
20 J. G. Wang, J. J. Zhao, L. Ma, B. L. Wang, and G. H. Wang, Structure and magnetic properties of cobalt doped (n= 2–14) clusters, Phys. Lett. A , 2007, 367(4-5): 335
doi: 10.1016/j.physleta.2007.01.093
21 J. Wang, Q. M. Ma, Z. Xie, Y. Liu, and Y. C. Li, From SinNi to Ni@Sin: An investigation of configurations and electronic structure, Phys. Rev. B , 2007, 76(3): 035406
doi: 10.1103/PhysRevB.76.035406
22 T. Miyazaki, H. Hiura, and T. Kanayama, Topology and energetics of metal-encapsulating Si fullerenelike cage clusters, Phys. Rev. B , 2002, 66(12): 121403
doi: 10.1103/PhysRevB.66.121403
23 M. Ohara, K. Miyajima, A. Pramann, A. Nakajima, and K. Kaya, Geometric and electronic structures of terbiumsilicon mixed clusters (TbSin; 6 _ n_ 16), J. Phys. Chem. A , 2002, 106(15): 3702
doi: 10.1021/jp012952c
24 M. Ohara, K. Miyajima, A. Pramann, A. Nakajima, and K. Kaya, Geometric and electronic structures of terbiumsilicon mixed clusters (TbSin; 6 _ n_ 16), J. Phys. Chem. A , 2007, 111(42): 10884
doi: 10.1021/jp076626u
25 A. Grubisic, H. P. Wang, Y. J. Ko, and K. H. Bowen, Photoelectron spectroscopy of europium-silicon cluster anions, EuSi - n(3 _ n_ 17), J. Chem. Phys. , 2008, 129(5): 054302
doi: 10.1063/1.2963500
26 A. Grubisic, Y. J. Ko, H. P. Wang, and K. H. Bowen, Photoelectron spectroscopy of Lanthanide-Silicon cluster anions LnSi - n(3 _ n_ 13; Ln= Ho, Gd, Pr, Sm, Eu, Yb): Prospect for magnetic silicon-based clusters, J. Am. Chem. Soc. , 2009, 131(30): 10783
doi: 10.1021/ja805205r
27 K. Koyasu, J. Atobe, S. Furuse, and A. Nakajima, Anion photoelectron spectroscopy of transition metal- and lanthanide metal-silicon clusters: Msi - n(n= 6–20), J. Chem. Phys. , 2008, 129(21): 214301
doi: 10.1063/1.3023080
28 T. T. Cao, L. X. Zhao, X. J. Feng, Y. M. Lei, and Y. H. Luo, Structural and electronic properties of LuSin(n= 1–12) clusters: A density functional theory investigation, J. Mol. Struct. Theochem. , 2009, 895(1-3): 148
doi: 10.1016/j.theochem.2008.10.035
29 R. N. Zhao, J. G. Han, J. T. Bai, F. Y. Liu, and L. S. Sheng, A relativistic density functional study of Sin(n= 7–13) clusters with rare earth ytterbium impurity, Chem. Phys. , 2010, 372(1-3): 89
doi: 10.1016/j.chemphys.2010.05.005
30 V. Kumar, A. K. Singh, and Y. Kawazoe, Charged and magnetic fullerenes of silicon by metal encapsulation: Predictions from ab initiocalculations, Phys. Rev. B , 2006, 74(12): 125411
doi: 10.1103/PhysRevB.74.125411
31 J. Wang, Y. Liu, and Y. C. Li, Magnetic silicon fullerence, Phys. Chem. Chem. Phys. , 2010, 12(37): 11428
doi: 10.1039/b923865d
32 G. F. Zhao, J. M. Sun, Y. Z. Gu, and Y. X. Wang, Density-functional study of structural, electronic, and magnetic properties of the EuSin(n= 1–13) clusters, J. Chem. Phys. , 2009, 131(11): 114312
doi: 10.1063/1.3232009
33 T. G. Liu, G. F. Zhao, and Y. X. Wang, Structural, electronic and magnetic properties of GdSin(n= 1–17) clusters: A density functional study, Phys. Lett. A , 2011, 375(7): 1120
doi: 10.1016/j.physleta.2011.01.023
34 B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules, J. Chem. Phys. , 1990, 92(1): 508
doi: 10.1063/1.458452
35 B. Delley, From molecules to solids with the DMol3 approach, J. Chem. Phys. , 2000, 113(18): 7756
doi: 10.1063/1.1316015
36 M. Dolg, U. Wedig, H. Stoll, and H. Preuss, Energy-adjusted ab initiopseudopotentials for the first row transition elements, J. Chem. Phys. , 1987, 86(2): 866
doi: 10.1063/1.452288
37 A. Bergner, M. Dolg, W. Küchle, H. Stoll, and H. Preu?, Ab initio energy-adjusted pseudopotentials for elements of groups 13–17, Mol. Phys. , 1993, 80(6): 1431
doi: 10.1080/00268979300103121
38 X. L. Zhu, X. C. Zeng, Y. A. Lei, and B. Pan, Structures and stability of medium silicon clusters. II. Ab initiomolecular orbital calculations of Si12–Si20, J. Chem. Phys. , 2004, 120(19): 8985
doi: 10.1063/1.1690755
39 A. A. Shvartsburg, B. Liu, M. F. Jarrold, and K. M. Ho, Modeling ionic mobilities by scattering on electronic density isosurfaces: Application to silicon cluster anions, J. Chem. Phys. , 2000, 112(10): 4517
doi: 10.1063/1.481042
40 C. Pouchan, D. Begue, and D. Y. Zhang, Between geometry, stability, and polarizability: Density functional theory studies of silicon clusters Sin(n= 3–10), J. Chem. Phys. , 2004, 121(10): 4628
doi: 10.1063/1.1768166
41 M. A. Belkhir, S. Mahtout, I. Belabbas, and M. Samah, Structure and electronic property of medium-sized silicon clusters, Physica E , 2006, 31(1): 86
doi: 10.1016/j.physe.2005.10.004
42 T. T. Cao, X. J. Feng, L. X. Zhao, X. Liang, Y. M. Lei, and Y. H. Luo, Structure and magnetic properties of La-doped Sin(n= 1–12, 24) clusters: a density functional theory investigation, Eur. Phys. J. D , 2008, 49(3): 343
doi: 10.1140/epjd/e2008-00172-5
43 S. N. Khanna, B. K. Rao, and P. Jena, Magic numbers in metallo-inorganic clusters: Chromium encapsulated in silicon cages, Phys. Rev. Lett. , 2002, 89(1): 016803
doi: 10.1103/PhysRevLett.89.016803
[1] Chang-Da Zhou, Zhen Mou, Rui Bao, Zhong Li, Shu-Yun Teng. Compound plasmonic vortex generation based on spiral nanoslits[J]. Front. Phys. , 2021, 16(3): 33503-.
[2] Ya-Nan Qin, Min Li, Yudi Feng, Siqiang Luo, Yueming Zhou, Peixiang Lu. Extracting the phase distribution of the electron wave packet ionized by an elliptically polarized laser pulse[J]. Front. Phys. , 2021, 16(3): 32502-.
[3] Wen-Jin Yin, Xiao-Long Zeng, Bo Wen, Qing-Xia Ge, Ying Xu, Gilberto Teobaldi, Li-Min Liu. The unique carrier mobility of Janus MoSSe/GaN heterostructures[J]. Front. Phys. , 2021, 16(3): 33501-.
[4] Lianzhen Cao, Xia Liu, Yingde Li, Xiusheng Li, Lena Du, Shengyao Chen, Shenlong Zhao, Cong Wang. Recent progress in all-inorganic metal halide nanostructured perovskites: Materials design, optical properties, and application[J]. Front. Phys. , 2021, 16(3): 33201-.
[5] Yang-Ting Fu, Wei-Lun Gu, Zong-Yu Hou, Sher Afgan Muhammed, Tian-Qi Li, Yun Wang, Zhe Wang. Mechanism of signal uncertainty generation for laser-induced breakdown spectroscopy[J]. Front. Phys. , 2021, 16(2): 22502-.
[6] Sadegh Imani Yengejeh, William Wen, Yun Wang. Mechanical properties of lateral transition metal dichalcogenide heterostructures[J]. Front. Phys. , 2021, 16(1): 13502-.
[7] Yuan-Yuan Wang, Feng-Ping Li, Wei Wei, Bai-Biao Huang, Ying Dai. Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides[J]. Front. Phys. , 2021, 16(1): 13501-.
[8] San-Dan Wang, Jin-Peng Yuan, Li-Rong Wang, Lian-Tuan Xiao, Suo-Tang Jia. Investigation on the Cs 6S1/2 to 7D electric quadrupole transition via monochromatic two-photon process at 767 nm[J]. Front. Phys. , 2021, 16(1): 12502-.
[9] Wen Tong, Qun Wei, Hai-Yan Yan, Mei-Guang Zhang, Xuan-Min Zhu. Accelerating inverse crystal structure prediction by machine learning: A case study of carbon allotropes[J]. Front. Phys. , 2020, 15(6): 63501-.
[10] Jia Liu, Xian Liao, Jiayu Liang, Mingchao Wang, Qinghong Yuan. Tuning the electronic properties of hydrogen passivated C3N nanoribbons through van der Waals stacking[J]. Front. Phys. , 2020, 15(6): 63503-.
[11] Dimuthu Wijethunge, Lei Zhang, Cheng Tang, Aijun Du. Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching[J]. Front. Phys. , 2020, 15(6): 63504-.
[12] Bo Zhou, Yasuro Funaki, Hisashi Horiuchi, Akihiro Tohsaki. Nonlocalized clustering and evolution of cluster structure in nuclei[J]. Front. Phys. , 2020, 15(1): 14401-.
[13] Guo-Feng Zhang, Chang-Gang Yang, Yong Ge, Yong-Gang Peng, Rui-Yun Chen, Cheng-Bing Qin, Yan Gao, Lei Zhang, Hai-Zheng Zhong, Yu-Jun Zheng, Lian-Tuan Xiao, Suo-Tang Jia. Influence of surface charges on the emission polarization properties of single CdSe/CdS dot-in-rods[J]. Front. Phys. , 2019, 14(6): 63601-.
[14] Yan-Biao Gan, Ai-Guo Xu, Guang-Cai Zhang, Chuan-Dong Lin, Hui-Lin Lai, Zhi-Peng Liu. Nonequilibrium and morphological characterizations of Kelvin–Helmholtz instability in compressible flows[J]. Front. Phys. , 2019, 14(4): 43602-.
[15] Jia Liu, Chun Fai Chan, Ming Gong. Majorana fermions in semiconducting nanowire and Fulde–Ferrell superconductor hybrid structures[J]. Front. Phys. , 2019, 14(1): 13609-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed