Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2014, Vol. 9 Issue (2) : 194-199    https://doi.org/10.1007/s11467-013-0407-8
Pairing symmetry in layered BiS2 compounds driven by electron–electron correlation
Yi Liang1, Xianxin Wu1, Wei-Feng Tsai2, Jiangping Hu1,3()
1. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2. Department of Physics, Sun Yat-sen University, Kaohsiung 804, Taiwan, China; 3. Department of Physics, Purdue University, West Lafayette, IN 47907, USA
 Download: PDF(492 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We investigate the pairing symmetry of layered BiS2 compounds by assuming that electron-electron correlation is still important so that the pairing is rather short range. We find that the extended s-wave pairing symmetry always wins over d-wave when the pairing is confined between two short range sites up to next nearest neighbors. The pairing strength is peaked around the doping level x = 0.5, which is consistent with experimental observation. The extended s-wave pairing symmetry is very robust against spin–orbital coupling because it is mainly determined by the structure of Fermi surfaces. Moreover, the extended s-wave pairing can be distinguished from conventional s-wave pairing by measuring and comparing superconducting gaps of different Fermi surfaces.

Keywords BiS2-based superconductor      pairing symmetry      electron–electron correlation     
Corresponding Author(s): Hu Jiangping,Email:hu4@physics.purdue.edu   
Issue Date: 01 April 2014
 Cite this article:   
Yi Liang,Xianxin Wu,Wei-Feng Tsai, et al. Pairing symmetry in layered BiS2 compounds driven by electron–electron correlation[J]. Front. Phys. , 2014, 9(2): 194-199.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-013-0407-8
https://academic.hep.com.cn/fop/EN/Y2014/V9/I2/194
1 Y. Mizuguchi, H. Fujihisa, Y. Gotoh, K. Suzuki, H. Usui, K. Kuroki, S. Demura, Y. Takano, H. Izawa, and O. Miura, Novel BiS2-based layered superconductor Bi4O4S3, Phys. Rev. B , 2012, 86(22): 220510(R), arXiv: 1207.3145
2 Y. Mizuguchi, S. Demura, K. Deguchi, Y. Takano, H. Fujihisa, Y. Gotoh, H. Izawa, and O. Miura, Superconductivity in novel BiS2-based layered superconductor LaO1–xFxBiS2, J. Phys. Soc. Jpn. , 2012, 81: 114725, arXiv: 1207.3558
doi: 10.1143/JPSJ.81.114725
3 S. Demura, Y. Mizuguchi, K. Deguchi, H. Okazaki, H. Hara, T. Watanabe, S. J. Denholme, M. Fujioka, T. Ozaki, H. Fujihisa, Y. Gotoh, O. Miura, T. Yamaguchi, H. Takeya, and Y. Takano, BiS2-based superconductivity in F-substituted NdOBiS2, J. Phys. Soc. Jpn. , 2013, 82(3): 033708, arXiv: 1207.5248
doi: 10.7566/JPSJ.82.033708
4 R. Jha, A. Kumar, S. K. Singh, and V. P. S. Awana, Superconductivity at 5 K in NdO0.5F0.5BiS2, J. Appl. Phys. , 2013, 113(5): 056102, arXiv: 1208.3077
doi: 10.1063/1.4790322
5 S. Li, H. Yang, J. Tao, X. Ding, and H. H. Wen, Multiband exotic superconductivity in the new superconductor Bi4O4S3, Sci. China-Phys. Mech. Astron. , 2013, 56: 2019, arXiv: 1207.4955
6 S. G. Tan, L. J. Li, Y. Liu, P. Tong, B. C. Zhao, W. J. Lu, and Y. P. Sun, Superconducting and thermoelectric properties of new layered superconductor Bi4O4S3, Physica C , 2012, 483: 94, arXiv: 1207.5395
doi: 10.1016/j.physc.2012.08.003
7 H. Kotegawa, Y. Tomita, H. Tou, H. Izawa, Y. Mizuguchi, O. Miura, S. Demura, K. Deguchi, and Y. Takano, Pressure study of BiS2-based superconductors Bi4O4S3 and La(O,F)BiS2, J. Phys. Soc. Jpn ., 2012, 81: 103702, arXiv: 1207.6935
doi: 10.1143/JPSJ.81.103702
8 H. Usui, K. Suzuki, and K. Kuroki, Minimal electronic models for superconducting BiS2 layers, Phys. Rev. B , 2012, 86(22): 220501(R), arXiv: 1207.3888
9 T. Zhou and Z. D. Wang, Probing the superconducting pairing symmetry from spin excitations in BiS2 based superconductors, J. Supercond. Nov. Magn. , 2013, 26(8): 2735, arXiv: 1208.1101
doi: 10.1007/s10948-012-2073-4
10 X. G. Wan, H. C. Ding, S. Y. Savrasov, and C. G. Duan, Density-functional calculations of the electronic structure and lattice dynamics of superconducting LaO0.5F0.5BiS2: Evidence for an electron–phonon interaction near the chargedensity-wave instability, Phys. Rev. B , 2013, 87(11): 115124, arXiv: 1208.1807
doi: 10.1103/PhysRevB.87.115124
11 Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, Iron-based layered superconductor La[O1-xFx]FeAs (x= 0.05-0.12) with Tc = 26 K, J. Am. Chem. Soc. , 2008, 130(11): 3296
doi: 10.1021/ja800073m
12 P. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, Gap symmetry and structure of Fe-based superconductors, Rep. Prog. Phys. , 2011, 74(12): 124508
doi: 10.1088/0034-4885/74/12/124508
13 K. Seo, B. A. Bernevig, and J. P. Hu, Pairing symmetry in a two-orbital exchange coupling model of oxypnictides, Phys. Rev. Lett. , 2008, 101(20): 206404
doi: 10.1103/PhysRevLett.101.206404
14 J. P. Hu and H. Ding, Local antiferromagnetic exchange and collaborative Fermi surface as key ingredients of high temperature superconductors, Scientific Reports , 2012, 2: 381
doi: 10.1038/srep00381
[1] Dong-Dong Wang, Bin Liu, Min Liu, Yi-Feng Yang, Shi-Ping Feng. Impurity-induced bound states as a signature of pairing symmetry in multiband superconducting CeCu2Si2[J]. Front. Phys. , 2019, 14(1): 13501-.
[2] Shengshan Qin, Yinxiang Li, Qiang Zhang, Congcong Le, Jiangping Hu. Theoretical studies of superconductivity in doped BaCoSO[J]. Front. Phys. , 2018, 13(3): 137502-.
[3] Mateusz Krzyzosiak, Ryszard Gonczarek, Adam Gonczarek, Lucjan Jacak. Applications of the conformal transformation method in studies of composed superconducting systems[J]. Front. Phys. , 2016, 11(6): 117407-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed