Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2014, Vol. 9 Issue (4) : 529-536    https://doi.org/10.1007/s11467-014-0413-5
RESEARCH ARTICLE
Global dynamical correlation energies in covariant density functional theory: Cranking approximation
Qian-Shun Zhang (张前顺)1,Zhong-Ming Niu (牛中明)2,Zhi-Pan Li (李志攀)1(),Jiang-Ming Yao (尧江明)1,3,*(),Jie Meng (孟杰)4,5,6()
1. School of Physical Science and Technology, Southwest University, Chongqing 400715, China
2. School of Physics and Material Science, Anhui University, Hefei 230039, China
3. Department of Physics, Tohoku University, Sendai 980-8578, Japan
4. State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
5. School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
6. Department of Physics, University of Stellenbosch, Stellenbosch, South Africa
 Download: PDF(354 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The global dynamical correlation energies for 575 even–even nuclei with proton numbers ranging from Z= 8 to Z= 108 calculated with the covariant density functional theory using the PC-PK1 parametrization are presented. The dynamical correlation energies include the rotational correction energies obtained with the cranking approximation and the quadrupole vibrational correction energies. The systematic behavior of the present correlation energies is in good agreement with that obtained from the projected generator coordinate method using the SLy4 Skyrme force although our values are systematically smaller. After including the dynamical correlation energies, the rootmean- square deviation predicted by the PC-PK1 for the 575 even-even nuclei masses is reduced from 2.58 MeV to 1.24 MeV.

Keywords binding energies and masses      nuclear density functional theory and extensions     
Corresponding Author(s): Jiang-Ming Yao (尧江明)   
Issue Date: 26 August 2014
 Cite this article:   
Qian-Shun Zhang (张前顺),Zhong-Ming Niu (牛中明),Zhi-Pan Li (李志攀), et al. Global dynamical correlation energies in covariant density functional theory: Cranking approximation[J]. Front. Phys. , 2014, 9(4): 529-536.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-014-0413-5
https://academic.hep.com.cn/fop/EN/Y2014/V9/I4/529
1 I. Tanihata, H. Hamagaki, O. Hashimoto, Y. Shida, N. Yoshikawa, K. Sugimoto, O. Yamakawa, T. Kobayashi, and N. Takahashi, Measurements of interaction cross sections and nuclear radii in the light p-shell region, Phys. Rev. Lett., 1985, 55(24): 2676
doi: 10.1103/PhysRevLett.55.2676
2 A. C. Mueller and B. M. Sherrill, Nucli at the limits of particle stability, Annu. Rev. Nucl. Part. Sci., 1993, 43(1): 529
doi: 10.1146/annurev.ns.43.120193.002525
3 I. Tanihata, Nuclear structure studies from reaction induced by radioactive nuclear beams, Prog. Part. Nucl. Phys., 1995, 35: 505
doi: 10.1016/0146-6410(95)00046-L
4 J. Meng and P. Ring, Relativistic Hartree–Bogoliubov description of the neutron halo in 11Li, Phys. Rev. Lett., 1996, 77(19): 3963
doi: 10.1103/PhysRevLett.77.3963
5 J. Meng and P. Ring, Giant halo at the neutron drip line, Phys. Rev. Lett., 1998, 80(3): 460
doi: 10.1103/PhysRevLett.80.460
6 O. Sorlin and M. G. Porquet, Nuclear magic numbers: New features far from stability, Prog. Part. Nucl. Phys., 2008, 61(2): 602
doi: 10.1016/j.ppnp.2008.05.001
7 A. Ozawa, T. Kobayashi, T. Suzuki, K. Yoshida, and I. Tanihata, New magic number, N = 16, near the neutron drip line, Phys. Rev. Lett., 2000, 84(24): 5493
doi: 10.1103/PhysRevLett.84.5493
8 S. G. Zhou, J. Meng, P. Ring, and E. G. Zhao, Neutron halo in deformed nuclei, Phys. Rev. C, 2010, 82(1): 011301
doi: 10.1103/PhysRevC.82.011301
9 E.M. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle, Synthesis of the elements in stars, Rev. Mod. Phys., 1957, 29(4): 547
doi: 10.1103/RevModPhys.29.547
10 B. Sun, F. Montes, L. S. Geng, H. Geissel, Y. A. Litvinov, and J. Meng, Application of the relativistic mean-field mass model to the r-process and the influence of mass uncertainties, Phys. Rev. C, 2008, 78(2): 025806
doi: 10.1103/PhysRevC.78.025806
11 Z. M. Niu, B. Sun, and J. Meng, Influence of nuclear physics inputs and astrophysical conditions on the Th/U chronometer, Phys. Rev. C, 2009, 80(6): 065806
doi: 10.1103/PhysRevC.80.065806
12 Z. Li, Z. M. Niu, B. Sun, N. Wang, and J. Meng, WLW mass model in nuclear r-process calculations, Acta Phys. Sin., 2012, 61(7): 072601 (in Chinese)
13 W. H. Zhang, Z. M. Niu, F. Wang, X. B. Gong, and B. H. Sun, Uncertainties of nucleo-chronometers from nuclear physics inputs, Acta Phys. Sin., 2012, 61(11): 112601(in Chinese)
14 X. D. Xu, B. Sun, Z. M. Niu, Z. Li, Y. Z. Qian, and J. Meng, Reexamining the temperature and neutron density conditions for r-process nucleosynthesis with augmented nuclear mass models, Phys. Rev. C, 2013, 87(1): 015805
doi: 10.1103/PhysRevC.87.015805
15 Z. M. Niu, Y. F. Niu, H. Z. Liang, W. H. Long, T. Nik?i?, D. Vretenar, and J. Meng, b-decay half-lives of neutron-rich nuclei and matter flow in the r-process, Phys. Lett. B, 2013, 723(1-3): 172
doi: 10.1016/j.physletb.2013.04.048
16 P. M?ller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, Nuclear ground-state masses and deformations, At. Data Nucl. Data Tables, 1995, 59(2): 185
doi: 10.1006/adnd.1995.1002
17 H. A. Bethe and R. F. Bacher, Nuclear Physics A. Stationary states of nuclei, Rev. Mod. Phys., 1936, 8(2): 82
doi: 10.1103/RevModPhys.8.82
18 N. Wang, Z. Liang, M. Liu, and X. Wu, Mirror nuclei constraint in nuclear mass formula, Phys. Rev. C, 2010, 82(4): 044304
doi: 10.1103/PhysRevC.82.044304
19 M. Liu, N. Wang, Y. Deng, and X. Wu, Further improvements on a global nuclear mass model, Phys. Rev. C, 2011, 84(1): 014333
doi: 10.1103/PhysRevC.84.014333
20 J. Duflo and A. P. Zuker, Microscopic mass formulas, Phys. Rev. C, 1995, 52(1): R23
doi: 10.1103/PhysRevC.52.R23
21 H. Koura, T. Tachibana, M. Uno, and M. Yamada, Nuclidic mass formula on a spherical basis with an improved even– odd term, Prog. Theor. Phys., 2005, 113(2): 305
doi: 10.1143/PTP.113.305
22 M. Bender, G. F. Bertsch, and P. H. Heenen, Systematics of quadrupolar correlation energies, Phys. Rev. Lett., 2005, 94(10): 102503
doi: 10.1103/PhysRevLett.94.102503
23 M. Bender, G. F. Bertsch, and P. H. Heenen, Global study of quadrupole correlation effects, Phys. Rev. C, 2006, 73(3): 034322
doi: 10.1103/PhysRevC.73.034322
24 S. Goriely, N. Chamel, and J. M. Pearson, Skyrme–Hartree– Fock–Bogoliubov nuclear mass formulas: Crossing the 0.6 MeV accuracy threshold with microscopically deduced pairing, Phys. Rev. Lett., 2009, 102(15): 152503
doi: 10.1103/PhysRevLett.102.152503
25 S. Goriely, N. Chamel, and J. M. Pearson, Further explorations of Skyrme–Hartree–Fock–Bogoliubov mass formulas. XII. Stiffness and stability of neutron-star matter, Phys. Rev. C, 2010, 82(3): 035804
doi: 10.1103/PhysRevC.82.035804
26 S. Goriely, S. Hilaire, M. Girod, and S. Péru, First Gogny– Hartree–Fock–Bogoliubov nuclear mass model, Phys. Rev. Lett., 2009, 102(24): 242501
doi: 10.1103/PhysRevLett.102.242501
27 P. G. Reinhard, The relativistic mean-field description of nuclei and nuclear dynamics, Rep. Prog. Phys., 1989, 52(4): 439
doi: 10.1088/0034-4885/52/4/002
28 P. Ring, Relativistic mean field theory in finite nuclei, Prog. Part. Nucl. Phys., 1996, 37: 193
doi: 10.1016/0146-6410(96)00054-3
29 D. Vretenar, A. V. Afanasjev, G. A. Lalazissis, and P. Ring, Relativistic Hartree–Bogoliubov theory: Static and dynamic aspects of exotic nuclear structure, Phys. Rep., 2005, 409(3-4): 101
doi: 10.1016/j.physrep.2004.10.001
30 J. Meng, H. Toki, S. G. Zhou, S. Q. Zhang, W. H. Long, and L. S. Geng, Relativistic continuum Hartree Bogoliubov theory for ground-state properties of exotic nuclei, Prog. Part. Nucl. Phys., 2006, 57(2): 470
doi: 10.1016/j.ppnp.2005.06.001
31 D. Hirata, K. Sumiyoshi, I. Tanihata, Y. Sugahara, T. Tachibana, and H. Toki, A systematic study of even-even nuclei up to the drip lines within the relativistic mean field framework, Nucl. Phys. A, 1997, 616(1-2): 438
doi: 10.1016/S0375-9474(97)00115-2
32 G. A. Lalazissis, S. Raman, and P. Ring, Ground-state properties of even–even nuclei in the relativistic mean-field theory, At. Data Nucl. Data Tables, 1999, 71(1): 1
doi: 10.1006/adnd.1998.0795
33 L. S. Geng, H. Toki, and J. Meng, Masses, Deformations and charge radii – nuclear ground-state properties in the relativistic mean field model, Prog. Theor. Phys., 2005, 113(4): 785
doi: 10.1143/PTP.113.785
34 T. Nik?i?, D. Vretenar, and P. Ring, Beyond the relativistic mean-field approximation. II. Configuration mixing of meanfield wave functions projected on angular momentum and particle number, Phys. Rev. C, 2006, 74(6): 064309
doi: 10.1103/PhysRevC.74.064309
35 J. M. Yao, J. Meng, P. Ring, and D. Pena Arteaga, Threedimensional angular momentum projected relativistic pointcoupling approach for low-lying excited states in 24 Mg, Chin. Phys. Lett., 2008, 25(10): 3609
doi: 10.1088/0256-307X/25/10/024
36 J. M. Yao, J. Meng, P. Ring, and D. Pena Arteaga, Threedimensional angular momentum projection in relativistic mean-field theory, Phys. Rev. C, 2009, 79(4): 044312
doi: 10.1103/PhysRevC.79.044312
37 J. M. Yao, J. Meng, P. Ring, and D. Vretenar, Configuration mixing of angular-momentum-projected triaxial relativistic mean-field wave functions, Phys. Rev. C, 2010, 81(4): 044311
doi: 10.1103/PhysRevC.81.044311
38 T. Nik?i?, Z. P. Li, D. Vretenar, L. Próchniak, J. Meng, and P. Ring, Beyond the relativistic mean-field approximation. III. Collective Hamiltonian in five dimensions, Phys. Rev. C, 2009, 79(3): 034303
doi: 10.1103/PhysRevC.79.034303
39 Z. P. Li, T. Nik?i?, D. Vretenar, J. Meng, G. A. Lalazissis, and P. Ring, Microscopic analysis of nuclear quantum phase transitions in the N≈90 region, Phys. Rev. C, 2009, 79(5): 054301
doi: 10.1103/PhysRevC.79.054301
40 Z. M. Niu, Y. F. Niu, Q. Liu, H. Z. Liang, and J. Y. Guo, Nuclear β+/EC decays in covariant density functional theory and the impact of isoscalar proton–neutron pairing, Phys. Rev. C, 2013, 87(5): 051303(R)
doi: 10.1103/PhysRevC.87.051303
41 J. M. Yao, H. Mei, H. Chen, J. Meng, P. Ring, and D. Vretenar, Configuration mixing of angular-momentum-projected triaxial relativistic mean-field wave functions. II. Microscopic analysis of low-lying states in magnesium isotopes, Phys. Rev. C, 2011, 83(1): 014308
doi: 10.1103/PhysRevC.83.014308
42 P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, New parametrization for the nuclear covariant energy density functional with a point-coupling interaction, Phys. Rev. C, 2010, 82(5): 054319
doi: 10.1103/PhysRevC.82.054319
43 P. W. Zhao, S. Q. Zhang, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Novel structure for magnetic rotation bands in 60Ni, Phys. Lett. B, 2011, 699(3): 181
doi: 10.1016/j.physletb.2011.03.068
44 P. W. Zhao, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Antimagnetic rotation band in nuclei: A microscopic description, Phys. Rev. Lett., 2011, 107(12): 122501
doi: 10.1103/PhysRevLett.107.122501
45 J. Xiang, Z. P. Li, Z. X. Li, J. M. Yao, and J. Meng, Covariant description of shape evolution and shape coexistence in neutron-rich nuclei at N≈ 60, Nucl. Phys. A, 2012, 873: 1
doi: 10.1016/j.nuclphysa.2011.10.002
46 Z. P. Li, C. Y. Li, J. Xiang, J. M. Yao, and J. Meng, Enhanced collectivity in neutron-deficient Sn isotopes in energy functional based collective Hamiltonian, Phys. Lett. B, 2012, 717(4-5): 470
doi: 10.1016/j.physletb.2012.09.061
47 X. M. Hua, T. H. Heng, Z. M. Niu, B. Sun, and J. Y. Guo, Comparative study of nuclear masses in the relativistic mean-field model, Sci. China Phys. Mech. Astron., 2012, 55(12): 2414
doi: 10.1007/s11433-012-4943-y
48 P. W. Zhao, L. S. Song, B. Sun, H. Geissel, and J. Meng, Crucial test for covariant density functional theory with new and accurate mass measurements from Sn to Pa, Phys. Rev. C, 2012, 86(6): 064324
doi: 10.1103/PhysRevC.86.064324
49 J. Meng, J. Peng, S. Q. Zhang, and P. W. Zhao, Progress on tilted axis cranking covariant density functional theory for nuclear magnetic and antimagnetic rotation, Front. Phys., 2013, 8(1): 55
doi: 10.1007/s11467-013-0287-y
50 X. Y. Qu, Y. Chen, S. Q. Zhang, P. W. Zhao, I. J. Shin, Y. Lim, Y. Kim, and J. Meng, Extending the nuclear chart by continuum: From oxygen to titanium, Sci. China Phys. Mech. Astron., 2013, 56(11): 2031
doi: 10.1007/s11433-013-5329-5
51 T. Bürvenich, D. G. Madland, J. A. Maruhn, and P. G. Reinhard, Nuclear ground state observables and QCD scaling in a refined relativistic point coupling model, Phys. Rev. C, 2002, 65(4): 044308
doi: 10.1103/PhysRevC.65.044308
52 S. Goriely, M. Samyn, J. M. Pearson, and M. Onsi, Further explorations of Skyrme–Hartree–Fock–Bogoliubov mass formulas. IV: Neutron-matter constraint, Nucl. Phys. A, 2005, 750(2-4): 425
doi: 10.1016/j.nuclphysa.2005.01.009
53 N. Chamel, S. Goriely, and J. M. Pearson, Further explorations of Skyrme–Hartree–Fock–Bogoliubov mass formulas. IX: Constraint of pairing force to S01 neutron-matter gap, Nucl. Phys. A, 2008, 812(1-4): 72
doi: 10.1016/j.nuclphysa.2008.08.015
54 D. Inglis, Nuclear moments of inertia due to nucleon motion in a rotating well, Phys. Rev., 1956, 103(6): 1786
doi: 10.1103/PhysRev.103.1786
55 S. Belyaev, Concerning the calculation of the nuclear moment of inertia, Nucl. Phys. A, 1961, 24: 322
56 See Supplemental files for the detailed results.
57 R. R. Rodríguez-Guzmán, J. L. Egido, and L. M. Robledo, Angular momentum projected analysis of quadrupole collectivity in Mg30,32,34 and Si32,34,36,38 with the Gogny interaction, Phys. Lett. B2000, 474(1-2): 15
doi: 10.1016/S0370-2693(00)00015-0
58 Z. P. Li, J. M. Yao, D. Vretenar, T. Nik?i?, H. Chen, and J. Meng, Energy density functional analysis of shape evolution in N=28 isotones, Phys. Rev. C, 2011, 84(5): 054304
doi: 10.1103/PhysRevC.84.054304
59 K. Heyde and J. L. Wood, Shape coexistence in atomic nuclei, Rev. Mod. Phys., 2011, 83(4): 1467
doi: 10.1103/RevModPhys.83.1467
60 G. Audi, A. H. Wapstra, and C. Thibault, The Ame2003 atomic mass evaluation, Nucl. Phys. A, 2003, 729(1): 337
doi: 10.1016/j.nuclphysa.2003.11.003
61 T. R. Rodríguez and J. L. Egido, Multiple shape coexistence in the nucleus, Phys. Lett. B, 2011, 705(3): 255
doi: 10.1016/j.physletb.2011.10.003
62 Y. Fu, H. Mei, J. Xiang, Z. P. Li, J. M. Yao, and J. Meng, Beyond relativistic mean-field studies of low-lying states in neutron-deficient krypton isotopes, Phys. Rev. C, 2013, 87(5): 054305
doi: 10.1103/PhysRevC.87.054305
63 E. Wigner, On the consequences of the symmetry of the nuclear hamiltonian on the spectroscopy of nuclei, Phys. Rev., 1937, 51(2): 106
doi: 10.1103/PhysRev.51.106
64 S. Goriely, M. Samyn, P. H. Heenen, J. M. Pearson, and F. Tondeur, Hartree–Fock mass formulas and extrapolation to new mass data, Phys. Rev. C, 2002, 66(2): 024326
doi: 10.1103/PhysRevC.66.024326
65 P. M?ller, R. Bengtsson, B. G. Carlsson, P. Olivius, and T. Ichikawa, Global calculations of ground-state axial shape asymmetry of nuclei, Phys. Rev. Lett., 2006, 97(16): 162502
doi: 10.1103/PhysRevLett.97.162502
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed