Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2014, Vol. 9 Issue (5) : 652-664    https://doi.org/10.1007/s11467-014-0418-0
REVIEW ARTICLE
Development of new classes of plasmon active nano-structures and their application in bio-sensing and energy guiding
Ondrej Stranik,Jacqueline Jatschka,Andrea Csáki,Wolfgang Fritzsche()
Leibniz Institute of Photonic Technology, Jena 07745, Germany
 Download: PDF(729 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Metal nanostructures exhibit special optical resonance modes originating from the subwavelength confinement of conductive electrons in the material. These resonance modes represent a strong research focus due to their application potential in optics and sensing application. In this short review recent achievements of our group in this field are highlighted. A wet-chemistry approach synthesis of advanced metallic nanostructures will be introduced and their exact positioning and manipulation by electric field is shown. Next, the application of these nanostructures for a detection of small molecules will be described in several examples. Also, it will be shown that metal nanostructures can be used for sub-wavelength light focusing and for efficient energy coupling into polymer chains.

Keywords plasmonics      sensing      nanostructures fabrication      energy guiding     
Corresponding Author(s): Wolfgang Fritzsche   
Issue Date: 15 October 2014
 Cite this article:   
Ondrej Stranik,Jacqueline Jatschka,Andrea Csáki, et al. Development of new classes of plasmon active nano-structures and their application in bio-sensing and energy guiding[J]. Front. Phys. , 2014, 9(5): 652-664.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-014-0418-0
https://academic.hep.com.cn/fop/EN/Y2014/V9/I5/652
1 S. J. Orfanidis, Electromagnetic Waves and Antennas, www.ece.rutgers.edu/orfanidi/ewa, 1999-2008
2 U. Kreibig and M. Vollmer, Optical properties of Metal Clusters, Springer Series in Materials Science, Berlin Heidelberg: Springer-Verlag, 1995
https://doi.org/10.1007/978-3-662-09109-8
3 A. E. Rider, K. Ostrikov, and S. A. Furman, Plasmas meet plasmonics- Everything old is new again, Eur. Phys. J. D, 2012, 66(9): 226
https://doi.org/10.1140/epjd/e2012-30273-3
4 S. Maier, Plasmonics: Fundamentals and Applications, Springer, 2007
5 M. Dragoman and D. Dragoman, Plasmonics: Applications to nanoscale terahertz and optical devices, Prog. Quantum Electron., 2008, 32(1): 1
https://doi.org/10.1016/j.pquantelec.2007.11.001
6 C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by small Particles, John Willey & Sons, Inc., 1983
7 H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Vol. 111 of Springer tracts in modern physics, 1988
8 H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, Silver nanowires as surface plasmon resonators, Phys. Rev. Lett., 2005, 95(25): 257403
https://doi.org/10.1103/PhysRevLett.95.257403
9 H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, Plasmonic nanostructures: Artificial molecules, Acc. Chem. Res., 2007, 40(1): 53
https://doi.org/10.1021/ar0401045
10 T. Wriedt, Light scattering theories and computer codes, J. Quant. Spectrosc. Radiat. Transf., 2009, 110(11): 833
https://doi.org/10.1016/j.jqsrt.2009.02.023
11 J. M. Montgomery, T. W. Lee, and S. K. Gray, Theory and modeling of light interactions with metallic nanostructures, J. Phys.: Condens. Matter, 2008, 20(32): 323201
https://doi.org/10.1088/0953-8984/20/32/323201
12 M. Karamehmedovi?R. Schuh, V. Schmidt, T. Wriedt, C. Matyssek, W. Hergert, A. Stalmashonak, G. Seifert, and O. Stranik, Comparison of numerical methods in near-field computation for metallic nanoparticles, Opt. Express, 2011, 19(9): 8939
https://doi.org/10.1364/OE.19.008939
13 J. Smajic, C. Hafner, L. Raguin, K. Tavzarashvili, and M. Mishrikey, Comparison of numerical methods for the analysis of plasmonic structures, J. Comput. Theor. Nanosci., 2009, 6(3): 763
https://doi.org/10.1166/jctn.2009.1107
14 L. R. Hirsch, A. M. Gobin, A. R. Lowery, F. Tam, R. A. Drezek, N. J. Halas, and J. L. West, Metal nanoshells, Ann. Biomed. Eng., 2006, 34(1): 15
https://doi.org/10.1007/s10439-005-9001-8
15 G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, Rational selection of gold nanorod geometry for label-free plasmonic biosensors, ACS Nano, 2009, 3(4): 795
https://doi.org/10.1021/nn8006465
16 X. Le Guevel, F. Y. Wang, O. Stranik, R. Nooney, V. Gubala, C. McDonagh, and B. D. MacCraith, Synthesis, stabilization, and functionalization of silver nanoplates for biosensor applications, J. Phys. Chem. C, 2009, 113(37): 16380
https://doi.org/10.1021/jp904761p
17 D. Aherne, M. Gara, J. M. Kelly, and Y. K. Gun’ko, From Ag nanoprisms to triangular AuAg nanoboxes, Adv. Funct. Mater., 2010, 20(8): 1329
https://doi.org/10.1002/adfm.200902030
18 C. S?nnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, A molecular ruler based on plasmon coupling of single gold and silver nanoparticles, Nat. Biotechnol., 2005, 23(6): 741
https://doi.org/10.1038/nbt1100
19 W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas, Nano Lett., 2010, 10(3): 1006
https://doi.org/10.1021/nl904168f
20 S. Bidault, F. J. Abajo, and A. Polman, Plasmon-based nanolenses assembled on a well-defined DNA template, J. Am. Chem. Soc., 2008, 130(9): 2750
https://doi.org/10.1021/ja711074n
21 Evanoff and G. Chumanov, Synthesis and optical properties of silver nanoparticles and arrays, ChemPhysChem, 2005, 6(7): 1221
https://doi.org/10.1002/cphc.200500113
22 B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, Plasmonic radiance: Probing structure at the ?ngstr?m scale with visible light, Nano Lett., 2013, 13(2): 497
https://doi.org/10.1021/nl303896d
23 K. Bao, N. A. Mirin, and P. Nordlander, Fano resonances in planar silver nanosphere clusters, Appl. Phys. A, 2010, 100(2): 333
https://doi.org/10.1007/s00339-010-5861-3
24 M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, Transition from isolated to collective modes in plasmonic oligomers, Nano Lett., 2010, 10(7): 2721
https://doi.org/10.1021/nl101938p
25 S. A. Maier, Plasmonics: The benefits of darkness, Nat. Mater., 2009, 8(9): 699
https://doi.org/10.1038/nmat2522
26 H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zaech, and B. Kasemo, Hole-mask colloidal lithography, Adv. Mater., 2007, 19(23): 4297
https://doi.org/10.1002/adma.200700680
27 T. Sannomiya, P. K. Sahoo, D. I. Mahcicek, H. H. Solak, C. Hafner, D. Grieshaber, and J. V?r?s, Biosensing by densely packed and optically coupled plasmonic particle arrays, Small, 2009, 5(16): 1889
https://doi.org/10.1002/smll.200900284
28 S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, Channel plasmon-polariton guiding by subwavelength metal grooves, Phys. Rev. Lett., 2005, 95(4): 117401
https://doi.org/10.1103/PhysRevLett.95.046802
29 S. A. Maier, P. G. Kik, and H. A. Atwater, Optical pulse propagation in metal nanoparticle chain waveguides, Phys. Rev. B, 2003, 67(20): 205402
https://doi.org/10.1103/PhysRevB.67.205402
30 B. Turker, H. Guner, S. Ayas, O. O. Ekiz, H. Acar, M. O. Guler, and A. Dana, Grating coupler integrated photodiodes for plasmon resonance based sensing, Lab Chip, 2011, 11(2): 282
https://doi.org/10.1039/c0lc00081g
31 M. Piliarik, M. Vala, I. Tichy, and J. Homola, Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons, Biosens. Bioelectron., 2009, 24(12): 3430
https://doi.org/10.1016/j.bios.2008.11.003
32 K. L. Lee, P. W. Chen, S. H. Wu, J. B. Huang, S. Y. Yang, and P. K. Wei, Enhancing surface plasmon detection using template-stripped gold nanoslit arrays on plastic films, ACS Nano, 2012, 6(4): 2931
https://doi.org/10.1021/nn3001142
33 A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, Optical transmission properties of a single subwavelength aperture in a real metal, Opt. Commun., 2004, 239(1-3): 61
https://doi.org/10.1016/j.optcom.2004.05.058
34 W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination, Nano Lett., 2009, 9(12): 4320
https://doi.org/10.1021/nl903145p
35 R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, A new generation of sensors based on extraordinary optical transmission, Acc. Chem. Res., 2008, 41(8): 1049
https://doi.org/10.1021/ar800074d
36 L. N. Shi, A. Kabashin, and M. Skorobogatiy, Spectral, amplitude and phase sensitivity of a plasmonic gas sensor in a metallic photonic crystal slab geometry: Comparison of the near and far field phase detection strategies, Sens. Actuators B: Chem., 2009, 143(1): 76
https://doi.org/10.1016/j.snb.2009.09.036
37 P. Biagioni, J. S. Huang, and B. Hecht, Nanoantennas for visible and infrared radiation, Rep. Prog. Phys., 2012, 75(2): 024402
https://doi.org/10.1088/0034-4885/75/2/024402
38 P. Bharadwaj, B. Deutsch, and L. Novotny, Optical antennas, Adv. Opt. Photon., 2009, 1(3): 438
https://doi.org/10.1364/AOP.1.000438
39 S. Bozhevolnyi, Plasmonic Nanoguides and Circuits, Pan Stanford, 2009
40 H. Chen, G. C. Schatz, and M. A. Ratner, Experimental and theoretical studies of plasmon-molecule interactions, Rep Prog. Phys., 2012, 75(9): 096402
https://doi.org/10.1088/0034-4885/75/9/096402
41 L. Novotny and B. Hecht, Principles of Nano-Optics, 2006
42 A. Zayats and D. Richards, Nano-optics and near-field optical microscopy, Artech House, 2009
43 C. Rockstuhl, S. Fahr, and F. Lederer, Absorption enhancement in solar cells by localized plasmon polaritons, J. Appl Phys., 2008, 104(12): 123102
https://doi.org/10.1063/1.3037239
44 P. Anger, P. Bharadwaj, and L. Novotny, Enhancement and quenching of single-molecule fluorescence, Phys. Rev. Lett., 2006, 96(11): 113002
https://doi.org/10.1103/PhysRevLett.96.113002
45 C. McDonagh, O. Stranik, R. Nooney, and B. D. Maccraith, Nanoparticle strategies for enhancing the sensitivity of fluorescence-based biochips, Nanomedicine, 2009, 4(6): 645
https://doi.org/10.2217/nnm.09.48
46 J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, Advances in surface-enhanced fluorescence, J. Fluoresc., 2004, 14(4): 425
https://doi.org/10.1023/B:JOFL.0000031824.48401.5c
47 W. Deng and E. M. Goldys, Plasmonic approach to enhanced fluorescence for applications in biotechnology and the life sciences, Langmuir, 2012, 28(27): 10152
https://doi.org/10.1021/la300332x
48 K. Hering, D. Cialla, K. Ackermann, T. D?rfer, R. M?ller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. R?sch, and J. Popp, SERS: A versatile tool in chemical and biochemical diagnostics, Anal. Bioanal. Chem., 2008, 390(1): 113
https://doi.org/10.1007/s00216-007-1667-3
49 L. Tong, T. Zhu, and Z. Liu, Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: From self-assembled arrays to individual gold nanoparticles, Chem. Soc. Rev., 2011, 40(3): 1296
https://doi.org/10.1039/c001054p
50 M. Kauranen and A. V. Zayats, Nonlinear plasmonics, Nat. Photonics, 2012, 6(11): 737
https://doi.org/10.1038/nphoton.2012.244
51 Z. Jacob, Quantum plasmonics, MRS Bull., 2012, 37(8): 761
https://doi.org/10.1557/mrs.2012.175
52 J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, Nanofabrication of Plasmonic Structures, Vol. 60 of Annua Review of Physical Chemistry, pp. 147-165, Palo Alto: Annual Reviews, 2009
53 M. B. Cortie and A. M. McDonagh, Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles, Chem. Rev., 2011, 111(6): 3713
https://doi.org/10.1021/cr1002529
54 J. Turkevich, P. C. Stevenson, and J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discuss. Faraday Soc., 1951, 11: 55
https://doi.org/10.1039/df9511100055
55 G. Frens, Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions, Nature, 1973, 241: 20
56 A. Csáki, S. Berg, N. Jahr, C. Leiterer, T. Schneider, A. Steinbrück, D. Zopf, and W. Fritzsche, Plasmonic Nanoparticles- Noble Material for SensoricApplications, Ch. 9, pp. 245-261, Nova Science Publishers, 2010
57 A. Steinbrück, A. Csáki, and W. Fritzsche, Metal Nanoparticles for Molecular Plasmonics, Vol. 2010 of Reviews in Plasmonics, Ch. 1, pp. 1-37, New York: Springer, 2012
58 A. Steinbrück, A. Csáki, G. Festag, and W. Fritzsche, Preparation and optical characterization of coreshell bimetal nanoparticles, Plasmonics, 2006, 1(1): 79
https://doi.org/10.1007/s11468-005-9000-5
59 A. Steinbrück, A. Csáki, K. Ritter, M. Leich, J. M. K?hler, and W. Fritzsche, Gold and golda“silver core-shell nanoparticle constructs with defined size based on DNA hybridization, J. Nanopart. Res., 2009, 11(3): 623
https://doi.org/10.1007/s11051-008-9401-4
60 W. Fritzsche, Molecular Plasmonics (Editorial to Special Issue “Molecular Plasmonics” of the Journal Plasmonics), Plasmonics, 2006, 1(1): 3
https://doi.org/10.1007/s11468-006-9009-4
61 A. P. Alivisatos, K. P. Johnsson, X. Peng, T. E. Wilson, C. J. Loweth, Jr Bruchez, and P. G. Schultz, Organization of “nanocrystal molecules” using DNA, Nature, 1996, 382(6592): 609
https://doi.org/10.1038/382609a0
62 A. Csáki, G. Maubach, D. Born, J. Reichert, and W. Fritzsche, DNA-based molecular nanotechnology, Single Molecules, 2002, 3(5-6): 275
https://doi.org/10.1002/1438-5171(200211)3:5/6<275::AID-SIMO275>3.0.CO;2-0
63 J. Vesenka, D. Bagg, A. Wolff, A. Reichert, R. Moeller, and W. Fritzsche, Auto-orientation of G-wire DNA on mica, Colloids Surf. B Biointerfaces, 2007, 58(2): 256
https://doi.org/10.1016/j.colsurfb.2007.03.020
64 S. I. Tanaka, W. Fritzsche, Y. Sako, and T. Yanagida, Synthesis of long-template DNA using enzymatic reaction for regular alignment of Au-nanoparticles, Chem. Lett., 2006, 35(11): 1290
https://doi.org/10.1246/cl.2006.1290
65 A. Steinbrück, A. Csáki, K. Ritter, M. Leich, J. M. K?hler, and W. Fritzsche, Gold-silver and silver-silver nanoparticle constructs based on DNA hybridization of thiol- and aminofunctionalized oligonucleotides, J. Biophoton., 2008, 1(2): 104
https://doi.org/10.1002/jbio.200810003
66 P. W. Rothemund, Folding DNA to create nanoscale shapes and patterns, Nature, 2006, 440(7082): 297
https://doi.org/10.1038/nature04586
67 A. Knauer, A. Thete, S. Li, H. Romanus, A. Csáki, W. Fritzsche, and J. M. K?hler, Au/Ag/Au double shell nanoparticles with narrow size distribution obtained by continuous micro segmented flow synthesis, Chem. Eng. J., 2011, 166(3): 1164
https://doi.org/10.1016/j.cej.2010.12.028
68 A. Knauer, A. Csáki, F. M?ller, C. Huhn, W. Fritzsche, and J. M. K?hler, Microsegmented flow-through synthesis of silver nanoprisms with exact tunable optical properties, J. Phys. Chem. C, 2012, 116(16): 9251
https://doi.org/10.1021/jp210842g
69 A. Knauer, S. Schneider, F. M?ller, A. Csáki, W. Fritzsche, and J. M. K?hler, Screening of plasmonic properties of composed metal nanoparticles by combinatorial synthesis in micro-fluid segment sequences, Chem. Eng. J., 2013, 227: 80
https://doi.org/10.1016/j.cej.2012.10.008
70 S. G. Penn, L. He, and M. J. Natan, Nanoparticles for bioanalysis, Curr. Opin. Chem. Biol., 2003, 7(5): 609
https://doi.org/10.1016/j.cbpa.2003.08.013
71 G. Doria, M. Larguinho, J. T. Dias, E. Pereira, R. Franco, and P. V. Baptista, Gold-silver-alloy nanoprobes for onepot multiplex DNA detection, Nanotechnology, 2010, 21(25): 255101
https://doi.org/10.1088/0957-4484/21/25/255101
72 E. Hutter and J. H. Fendler, Explotation of localized surface plasmon resonance, Adv. Mater., 2004, 16(19): 16851706
https://doi.org/10.1002/adma.200400271
73 A. Schwuchow, M. Zobel, A. Csáki, K. Schr?der, J. Kobelke, W. Fritzsche, and K. Schuster, Monolayers of different metal nanoparticles in microstructured optical fibers with multiplex plasmonic properties, Opt. Mater. Express, 2012, 2(8): 1050
https://doi.org/10.1364/OME.2.001050
74 S. Christke, C. Katzer, V. Grosse, F. Schmidl, G. Schmidl, W. Fritzsche, J. Petschulat, T. Pertsch, and M. Rettenmayr, Optical resonances of self-organized monocrystalline Au nanoparticles embedded in SrTiO3 matrix, Opt. Mater Express, 2011, 1(5): 890
https://doi.org/10.1364/OME.1.000890
75 C. Leiterer, G. Broenstrup, N. Jahr, M. Urban, C. Arnold, S. Christiansen, and W. Fritzsche, Applying contact to individual silicon nanowires using a dielectrophoresis (DEP)-based technique, J. Nanopart. Res., 2013, 15(5): 1628
https://doi.org/10.1007/s11051-013-1628-z
76 C. Leiterer, S. Berg, A. P. Eskelinen, A. Csáki, M. Urban, P. Torma, and W. Fritzsche, Assembling gold nanoparticle chains using an AC electrical field: Electrical detection of organic thiols, Sens. Actuators B: Chem., 2013, 176: 368
https://doi.org/10.1016/j.snb.2012.09.088
77 A. Csáki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schr?der, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers, Small, 2010, 6(22): 2584
78 K. Schr?der, A. Csáki, A. Schwuchow, F. Jahn, K. Strelau, I. Latka, T. Henkel, D. Malsch, K. Schuster, K. Weber, T. Schneider, R. M?ller, and W. Fritzsche, Functionalization of microstructured optical fibers by internal nanoparticle mono-layers for plasmonic biosensor applications, IEEE Sens. J., 2012, 12(1): 218
https://doi.org/10.1109/JSEN.2011.2144580
79 B. Seise, A. Csáki, A. Schwuchow, W. Fritzsche, K. Weber, D. Cialla, and J. Popp, Microstructured optical fibre as biosensor for pathogen detection on DNA-level, Biomedical Engineering-Biomedizinische Technik, Vol. 57, 2012
80 A. Kuzyk, Dielectrophoresis at the nanoscale, Electrophoresis, 2011, 32(17): 2307
81 A. Wolff, C. Leiterer, A. Csaki, and W. Fritzsche, Dielectrophoretic manipulation of DNA in microelectrode gaps for single-molecule constructs, Front. Biosci., 2008, 13(13): 6834
https://doi.org/10.2741/3191
82 G. Br?nstrup, C. Leiterer, N. Jahr, C. Gutsche, A. Lysov, I. Regolin, W. Prost, F. J. Tegude, W. Fritzsche, and S. Christiansen, A precise optical determination of nanoscale diameters of semiconductor nanowires, Nanotechnology, 2011, 22(38): 385201
https://doi.org/10.1088/0957-4484/22/38/385201
83 G. Br?nstrup, N. Jahr, C. Leiterer, A. Csáki, W. Fritzsche, and S. Christiansen, Optical properties of individual sili-con nanowires for photonic devices, ACS Nano, 2010, 4(12): 7113
https://doi.org/10.1021/nn101076t
84 J. Homola, Surface Plasmon Resonance Based Sensors, Springer, 2006
https://doi.org/10.1007/b100321
85 J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Biosensing with plasmonic nanosensors, Nat. Mater., 2008, 7(6): 442
https://doi.org/10.1038/nmat2162
86 A. G. Brolo, Plasmonics for future biosensors, Nat. Photonics, 2012, 6(11): 709
https://doi.org/10.1038/nphoton.2012.266
87 T. Chung, S. Y. Lee, E. Y. Song, H. Chun, and B. Lee, Plasmonic nanostructures for nano-scale bio-sensing, Sensors, 2011, 11(11): 10907
https://doi.org/10.3390/s111110907
88 S. Gao and N. Koshizaki, Recent developments and applications of hybrid surface plasmon resonance interfaces in optical sensing, Anal. Bioanal. Chem., 2011, 399(1): 91
https://doi.org/10.1007/s00216-010-4276-5
89 C. H?ppener and L. Novotny, Exploiting the light-metal interaction for biomolecular sensing and imaging, Q. Rev. Biophys., 2012, 45(2): 209
https://doi.org/10.1017/S0033583512000042
90 C. Inhee and C. Yeonho, Plasmonic nanosensors: Review and prospect, IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18(3): 1110
https://doi.org/10.1109/JSTQE.2011.2163386
91 K. M. Mayer and J. H. Hafner, Localized surface plasmon resonance sensors, Chem. Rev., 2011, 111(6): 3828
https://doi.org/10.1021/cr100313v
92 E. Ringe, B. Sharma, A. I. Henry, L. D. Marks, and R. P. Van Duyne, Single nanoparticle plasmonics, Phys. Chem Chem. Phys., 2013, 15(12): 4110
https://doi.org/10.1039/c3cp44574g
93 M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Nanostructured plasmonic sensors, Chem. Rev., 2008, 108(2): 494
https://doi.org/10.1021/cr068126n
94 T. Schneider, N. Jahr, J. Jatschka, A. Csaki, O. Stranik, and W. Fritzsche, Localized surface plasmon resonance (LSPR) study of DNA hybridization at single nanoparticle transducers, J. Nanopart. Res., 2013, 15(4): 1
https://doi.org/10.1007/s11051-013-1531-7
95 A. Steinbrück, O. Stranik, A. Csáki, and W. Fritzsche, Sensoric potential of gold-silver core-shell nanoparticles, Anal. Bioanal. Chem., 2011, 401(4): 1241
https://doi.org/10.1007/s00216-011-5177-y
96 N. Jahr, M. Anwar, O. Stranik, N. H?drich, N. Vogler, A. Csáki, J. Popp, and W. Fritzsche, Spectroscopy on single metallic nanoparticles using sub-wavelength apertures, J. Phys. Chem. C, 2013, 117(15): 7751
https://doi.org/10.1021/jp311135g
97 N. Jahr, N. H?drich, M. Anwar, A. Csáki, O. Stranik, and W. Fritzsche, Optical single-particle detection in nanoholes towards simple parallel detection of molecular binding events, Int. J. Environ. Anal. Chem., 2013, 93(2): 140
https://doi.org/10.1080/03067319.2012.672978
98 R. M?ller, A. Csáki, J. M. K?hler, and W. Fritzsche, Electrical classification of the concentration of bioconjugated metal colloids after surface adsorption and silver enhancement, Langmuir, 2001, 17(18): 5426
https://doi.org/10.1021/la0102408
99 G. Festag, T. Schüler, R. M?ller, A. Csáki, and W. Fritzsche, Growth and percolation of metal nanostructures in electrode gaps leading to conductive paths for electrical DNA analysis, Nanotechnology, 2008, 19(12): 125303
https://doi.org/10.1088/0957-4484/19/12/125303
100 S. Julich, M. Riedel, M. Kielpinski, M. Urban, R. Kretschmer, S. Wagner, W. Fritzsche, T. Henkel, R. M?ller, and S. Werres, Development of a lab-on-a-chip device for diagnosis of plant pathogens, Biosens. Bioelectron., 2011, 26(10): 4070
https://doi.org/10.1016/j.bios.2011.03.035
101 T. Schüler, R. Kretschmer, S. Jessing, M. Urban, W. Fritzsche, R. M?ller, and J. Popp, A disposable and cost efficient microfluidic device for the rapid chip-based electrical detection of DNA, Biosens. Bioelectron., 2009, 25(1): 15
https://doi.org/10.1016/j.bios.2009.05.040
102 F. Garwe, U. Bauersch?fer, A. Csáki, A. Steinbrück, K. Ritter, A. Bochmann, J. Bergmann, A. Weise, D. Akimov, G. Maubach, K. K?nig, G. Hüttmann, W. Paa, J. Popp, and W. Fritzsche, Optically controlled thermal management on the nanometer length scale, Nanotechnology, 2008, 19(5): 055207
https://doi.org/10.1088/0957-4484/19/05/055207
103 A. Csáki, F. Garwe, A. Steinbrück, G. Maubach, G. Festag, A. Weise, I. Riemann, K. K?nig, and W. Fritzsche, A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas, Nano Lett., 2007, 7(2): 247
https://doi.org/10.1021/nl061966x
104 J. Wirth, F. Garwe, G. H?hnel, A. Csáki, N. Jahr, O. Stranik, W. Paa, and W. Fritzsche, Plasmonic nanofabrication by long-range excitation transfer via DNA nanowire, Nano Lett., 2011, 11(4): 1505
https://doi.org/10.1021/nl104269x
105 B. Saccà and C. M. Niemeyer, DNA origami: The art of folding DNA, Angew. Chem. Int. Ed. Engl., 2012, 51(1): 58
https://doi.org/10.1002/anie.201105846
106 J. J. Toppari, J. Wirth, F. Garwe, O. Stranik, A. Csáki, J. Bergmann, W. Paa, and W. Fritzsche, Plasmonic coupling and long-range transfer of an excitation along a DNA nanowire, ACS Nano, 2013, 7(2): 1291
https://doi.org/10.1021/nn304789w
[1] O. de los Santos-Sánchez. Probing intensity-field correlations of single-molecule surface-enhanced Raman-scattered light[J]. Front. Phys. , 2019, 14(6): 61601-.
[2] Wen-Cheng Yue, Pei-Jun Yao, Li-Xin Xu, Hai Ming. All-dielectric bowtie waveguide with deep subwavelength mode confinement[J]. Front. Phys. , 2018, 13(4): 134207-.
[3] Arthur Losquin,Tom T. A. Lummen. Electron microscopy methods for space-, energy-, and time-resolved plasmonics[J]. Front. Phys. , 2017, 12(1): 127301-.
[4] P. James Schuck,Wei Bao,Nicholas J. Borys. A polarizing situation: Taking an in-plane perspective for next-generation near-field studies[J]. Front. Phys. , 2016, 11(2): 117804-.
[5] Hong-Yan Liang,Hong Wei,Hong-Xing Xu. Deviating from the nanorod shape: Shape-dependent plasmonic properties of silver nanorice and nanocarrot structures[J]. Front. Phys. , 2016, 11(2): 117301-.
[6] Sanshui Xiao,Xiaolong Zhu,Bo-Hong Li,N. Asger Mortensen. Graphene-plasmon polaritons: From fundamental properties to potential applications[J]. Front. Phys. , 2016, 11(2): 117801-.
[7] Yu-Liang Zhao, Yan-Lin Song, Wei-Guo Song, Wei Liang, Xing-Yu Jiang, Zhi-Yong Tang, Hong-Xing Xu, Zhi-Xiang Wei, Yun-Qi Liu, Ming-Hua Liu, Lei Jiang, Xin-He Bao, Li-Jun Wan, Chun-Li Bai. Progress of nanoscience in China[J]. Front. Phys. , 2014, 9(3): 257-288.
[8] Zee Hwan Kim. Single-molecule surface-enhanced Raman scattering: Current status and future perspective[J]. Front. Phys. , 2014, 9(1): 25-30.
[9] Yizhuo He, Junxue Fu, Yiping Zhao. Oblique angle deposition and its applications in plasmonics[J]. Front. Phys. , 2014, 9(1): 47-59.
[10] Yuko S. Yamamoto, Mitsuru Ishikawa, Yukihiro Ozaki, Tamitake Itoh. Fundamental studies on enhancement and blinking mechanism of surface-enhanced Raman scattering (SERS) and basic applications of SERS biological sensing[J]. Front. Phys. , 2014, 9(1): 31-46.
[11] Yi-Wen Hu, Yun-Feng Xiao, Yong-Chun Liu, Qihuang Gong. Optomechanical sensing with on-chip microcavities[J]. Front. Phys. , 2013, 8(5): 475-490.
[12] Zhi-Yuan Li. Nanophotonics in China: Overviews and highlights[J]. Front. Phys. , 2012, 7(6): 601-631.
[13] Guang-cun SHAN (单光存), Shu-ying BAO (包术颖), Kang ZHANG (张康), Wei HUANG (黄维). Theoretical study of photon emission from single quantum dot emitter coupled to surface plasmons[J]. Front. Phys. , 2011, 6(3): 313-319.
[14] Da-he LIU (刘大禾), Jin-wei SHI (石锦卫), Xu-dong CHEN (陈旭东), Min OUYANG (欧阳敏), Wen-ping GONG (弓文平), . Brillouin lidar and related basic physics[J]. Front. Phys. , 2010, 5(1): 82-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed