Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2014, Vol. 9 Issue (4) : 477-482    https://doi.org/10.1007/s11467-014-0436-y
RESEARCH ARTICLE
Generation of adjustable pure spin currents in negative-U systems
Rui-Qiang Wang1,*(),Li Sheng2,Liang-Bin Hu1,Mou Yang1,Baigeng Wang2,D. Y. Xing2
1. Laboratory of Quantum Engineering and Quantum Materials, ICMP and SPTE, South China Normal University, Guangzhou 510006, China
2. National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
 Download: PDF(281 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Single-particle sequential tunneling is studied through a negative-Ucenter hybridized with a superconducting, a ferromagnetic, and a normal metal electrodes. In stark contrast to the case of positive U, the single-particle tunneling in attractive charging energy is usually prohibited by ground states with electrons in pairs. We find a microscopic mechanism to induce single-particle sates from pair states. As a consequence, in the nonpolarized metal terminal a remarkable pure spin current with no charge currents survives over a wide range of gate- and bias- voltages, which is rather crucial for experimental observation and design of spintronic devices. In addition, a significant spin-filter effect is presented in certain bias regime.

Keywords spin current      negative U      proximity effect     
Corresponding Author(s): Rui-Qiang Wang   
Issue Date: 26 August 2014
 Cite this article:   
Rui-Qiang Wang,Li Sheng,Liang-Bin Hu, et al. Generation of adjustable pure spin currents in negative-U systems[J]. Front. Phys. , 2014, 9(4): 477-482.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-014-0436-y
https://academic.hep.com.cn/fop/EN/Y2014/V9/I4/477
1 I. ?uti?, J. Fabian, and S. D. Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys., 2004, 76(2): 323
doi: 10.1103/RevModPhys.76.323
2 Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, Observation of the spin Hall effect in semiconductors, Science, 2004, 306(5703): 5703
doi: 10.1126/science.1105514
3 F. J. Jedema, A. T. Filip, and B. J. van Wees, Electrical spin injection and accumulation at room temperature in an allmetal mesoscopic spin valve, Nature, 2001, 410(6826): 345
doi: 10.1038/35066533
4 K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, Observation of the spin Seebeck effect, Nature, 2008, 455(7214): 778
doi: 10.1038/nature07321
5 A. R. Rocha, V. M. Garciá-Suárez, S. W. Bailey, C. J. Lambert, J. Ferrer, and S. Sanvito, Towards molecular spintronics, Nat. Mater., 2005, 4(4): 335
doi: 10.1038/nmat1349
6 L. Bogani and W. Wernsdorfer, Molecular spintronics using single-molecule magnets, Nat. Mater., 2008, 7(3): 179
doi: 10.1038/nmat2133
7 D. Fedorets, L. Y. Gorelik, R. I. Shekhter, and M. Jonson, Spintronics of a nanoelectromechanical shuttle, Phys. Rev. Lett., 2005, 95(5): 057203
doi: 10.1103/PhysRevLett.95.057203
8 R. Q. Wang, B. G. Wang, and D. Y. Xing, Spin valve effect in a magnetic nanoelectromechanical shuttle, Phys. Rev. Lett., 2008, 100(11): 117206
doi: 10.1103/PhysRevLett.100.117206
9 B. K. Kim, Y. H. Ahn, J. J. Kim, M. S. Choi, M. H. Bae, K. Kang, J. S. Lim, R. Lopez, and N. Kim, Transport measurement of Andreev bound states in a Kondo-correlated quantum dot, Phys. Rev. Lett., 2013, 110(7): 076803
doi: 10.1103/PhysRevLett.110.076803
10 A. Martín-Rodero and A. L. Yeyati, Josephson and Andreev transport through quantum dots, Adv. Phys., 2011, 60(6): 899
doi: 10.1080/00018732.2011.624266
11 A. Oguri, Y. Tanaka, and J. Bauer, Interplay between Kondo and Andreev–Josephson effects in a quantum dot coupled to one normal and two superconducting leads, Phys. Rev. B, 2013, 87(7): 075432
doi: 10.1103/PhysRevB.87.075432
12 W. Chang, V. E. Manucharyan, T. S. Jespersen, J. Nygard, and C. M. Marcus, Tunneling spectroscopy of quasiparticle bound states in a spinful josephson junction, Phys. Rev. Lett., 2013, 110(21): 217005
doi: 10.1103/PhysRevLett.110.217005
13 C. Richard, M. Houzet, and J. S. Meyer, Andreev current induced by ferromagnetic resonance, Phys. Rev. Lett., 2012, 109(5): 057002
doi: 10.1103/PhysRevLett.109.057002
14 B. Sothmann, D. Futterer, M. Governale, and J. K?nig, Probing the exchange field of a quantum-dot spin valve by a superconducting lead, Phys. Rev. B, 2010, 82(9): 094514
doi: 10.1103/PhysRevB.82.094514
15 D. Futterer, M. Governale, M. G. Pala, and J. K?nig, Nonlocal Andreev transport through an interacting quantum dot, Phys. Rev. B, 2009, 79(5): 054505
doi: 10.1103/PhysRevB.79.054505
16 D. Futterer, M. Governale, and J. K?nig, Generation of pure spin currents by superconducting proximity effect in quantum dots, Europhys. Lett., 2010, 91(4): 47004
doi: 10.1209/0295-5075/91/47004
17 J. Koch, M. E. Raikh, and F. von Oppen, Pair tunneling through single molecules, Phys. Rev. Lett., 2006, 96(5): 056803
doi: 10.1103/PhysRevLett.96.056803
18 J. Koch and F. von Oppen, Franck-Condon blockade and giant Fano factors in transport through single molecules, Phys. Rev. Lett., 2005, 94(20): 206804
doi: 10.1103/PhysRevLett.94.206804
19 K. I. Wysokiński, Thermal transport of molecular junctions in the pair tunneling regime, Phys. Rev. B, 2010, 82(11): 115423
doi: 10.1103/PhysRevB.82.115423
20 N. T. Son, X. T. Trinh, L. S. Lovlie, B. G. Svensson, K. Kawahara, J. Suda, T. Kimoto, T. Umeda, J. Isoya, T. Makino, T. Ohshima, and E. Janzen, Negative-U system of carbon vacancy in 4H-SiC, Phys. Rev. Lett., 2012, 109(18): 187603
doi: 10.1103/PhysRevLett.109.187603
21 T. A. Costi and V. Zlatic, Charge Kondo anomalies in PbTe doped with Tl impurities, Phys. Rev. Lett., 2012, 108(3): 036402
doi: 10.1103/PhysRevLett.108.036402
22 C. Kraiya and D. H. Evans, Investigation of potential inversion in the reduction of 9,10-dinitroanthracene and 3,6- dinitrodurene, J. Electroanal. Chem., 2004, 565(1): 29
doi: 10.1016/j.jelechem.2003.09.024
23 P. W. Anderson, Model for the electronic structure of amorphous semiconductors, Phys. Rev. Lett., 1975, 34(15): 953
doi: 10.1103/PhysRevLett.34.953
24 J. Koch, E. Sela, Y. Oreg, and F. von Oppen, Nonequilibrium charge-Kondo transport through negative-U molecules, Phys. Rev. B, 2007, 75(19): 195402
doi: 10.1103/PhysRevB.75.195402
25 P. S. Cornaglia, H. Ness, and D. R. Grempel, Many-body effects on the transport properties of single-molecule devices, Phys. Rev. Lett., 2004, 93(14): 147201
doi: 10.1103/PhysRevLett.93.147201
26 P. Recher, Y. V. Nazarov, and L. P. Kouwenhoven, Josephson light-emitting diode, Phys. Rev. Lett., 2010, 104(15): 156802
doi: 10.1103/PhysRevLett.104.156802
27 T. Meng, S. Florens, and P. Simon, Self-consistent description of Andreev bound states in Josephson quantum dot devices, Phys. Rev. B, 2009, 79(22): 224521
doi: 10.1103/PhysRevB.79.224521
28 C. Timm, Tunneling through molecules and quantum dots: Master-equation approaches, Phys. Rev. B, 2008, 77(19): 195416
doi: 10.1103/PhysRevB.77.195416
29 Z. Chen, B. G. Wang, D. Y. Xing, and J. Wang, A spin injector, Appl. Phys. Lett., 2004, 85(13): 2553
doi: 10.1063/1.1793335
30 F. M. Souza, J. C. Egues, and A. P. Jauho, Quantum dot as a spin-current diode: A master-equation approach, Phys. Rev. B, 2007, 75(16): 165303
doi: 10.1103/PhysRevB.75.165303
31 S. De Franceschi, L. Kouwenhoven, C. Sch?nenberger, and W. Wernsdorfer, Hybrid superconductor–quantum dot devices, Nat. Nanotechnol., 2010, 5(10): 703
doi: 10.1038/nnano.2010.173
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed