|
|
Fano resonances in complex plasmonic super-nanoclusters: The effect of environmental modifications on the LSPR sensitivity |
Arash Ahmadivand1,*( ),Saeed Golmohammadi2 |
1. Young Researchers and Elite Club, Ahar Branch, Islamic Azad University, Ahar, Iran
2. School of Engineering-Emerging Technologies, University of Tabriz, Tabriz 5166614761, Iran |
|
|
Abstract In this study, gold nanodisk clusters in heptamer orientations as clusters were used to design a super-heptamer consisting of one central and six peripheral heptamers. We examined the position and movement of the plasmon and Fano resonances by sketching the spectral response of the superstructure for various nanodisk dimensions. The quality of the interference between the superradiant and subradiant plasmon resonance modes of the nanodisk clusters was found to depend strongly on the structural configuration and the refractive index of the environmental medium. We replaced the central heptamer with a nanodisk and probed the position of the Fano resonance by geometrically altering the nanodisk structure. Finally, the effect of the dielectric environment on the plasmon response of both of the studied structures was examined numerically and theoretically. The localized surface plasmon resonance sensitivity of the finite plasmonic structures to the presence of liquid substances was investigated and shown by plotting the linear figure of merit. The finite-difference time-domain method was used as a numerical tool to investigate the plasmon response of the structure.
|
Keywords
gold nanodisk
spectral response
Fano resonance
localized surface plasmon resonance (LSPR)
figure of merit (FoM)
|
Corresponding Author(s):
Arash Ahmadivand
|
Issue Date: 13 March 2015
|
|
1 |
H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings; Berlin: Springer-Verlag, 1988
|
2 |
U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Berlin: Springer-Verlag, 1995
https://doi.org/10.1007/978-3-662-09109-8
|
3 |
B. E. A. Saleh and M. C. Tiech, Fundamentals of Photonics, New York: Wiley, 1991
https://doi.org/10.1002/0471213748
|
4 |
S. A. Maier, Plasmonics: Fundamentals and Applications, New York: Springer, 2007
|
5 |
W. L. Barnes, A. Dereux, and T. W. Ebbesen, Surface plasmon subwavelength optics, Nature 424(6950), 824 (2003)
https://doi.org/10.1038/nature01937
|
6 |
D. K. Gramotnev and S. I. Bozhevolnyi, Plasmonics beyond the diffraction limit, Nat. Photonics 4(2), 83 (2010)
https://doi.org/10.1038/nphoton.2009.282
|
7 |
J. J. Mock, D. R. Smith, and S. Schultz, Local refractive index dependence of plasmon resonance spectra from individual nanoparticles, Nano Lett. 3(4), 485 (2003)
https://doi.org/10.1021/nl0340475
|
8 |
S. Linic, P. Christopher, and D. B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy, Nat. Mater. 10(12), 911 (2011)
https://doi.org/10.1038/nmat3151
|
9 |
J. B. Pendry, A. Aubry, D. R. Smith, and S. A. Maier, Transformation optics and subwavelength control of light, Science 337(6094), 549 (2012)
https://doi.org/10.1126/science.1220600
|
10 |
J. Zhu, J. J. Li, L. Yuan, and J. W. Zhao, Optimization of three-layered Au-Ag bimetallic nanoshells for triple-bands surface plasmon resonance, J. Phys. Chem. C 116(21), 11734 (2012)
https://doi.org/10.1021/jp301470p
|
11 |
C. Y. Tsai, J. W. Lin, C. Y. Wu, P. T. Lin, T. W. Lu, and P. T. Lee, Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode, Nano Lett. 12(3), 1648 (2012)
https://doi.org/10.1021/nl300012m
|
12 |
B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, Close encounters between two nanoshells, Nano Lett. 8(4), 1212 (2008)
https://doi.org/10.1021/nl080271o
|
13 |
L. Cheng, J. Song, J. Yin, and H. Duan, Self-assembled plasmonic dimers of amphiphilic gold nanocrystals, J. Phys. Chem. Lett. 2(17), 2258 (2011)
https://doi.org/10.1021/jz201011b
|
14 |
S. S. A?movi?, M. P. Kreuzer, M. U. González, and R. Quidant, Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing, ACS Nano 3(5), 1231 (2009)
https://doi.org/10.1021/nn900102j
|
15 |
D. W. Brandl, N. A. Mirin, and P. Nordlander, Plasmon modes of nanosphere trimers and quadrumers, J. Phys. Chem. B 110(25), 12302 (2006)
https://doi.org/10.1021/jp0613485
|
16 |
P. K. Jain and M. A. El-Sayed, Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: Elongated particle pairs and nanosphere trimers, J. Phys. Chem. C 112(13), 4954 (2008)
https://doi.org/10.1021/jp7120356
|
17 |
L. Chuntonov and G. Haran, Trimeric plasmonic molecules: The role of symmetry, Nano Lett. 11(6), 2440 (2011)
https://doi.org/10.1021/nl2008532
|
18 |
J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Schvets, P. Nordlander, and F. Capasso, Fano-like interference in self-assembled plasmonic quadrumer clusters, Nano Lett. 10(11), 4680 (2010)
https://doi.org/10.1021/nl1029732
|
19 |
J. A. Fan, K. Bao, L. Sun, J. Bao, V. N. Manoharan, P. Nordlander, and F. Capasso, Plasmonic mode engineering with templated self-assembled nanoclusters, Nano Lett. 12(10), 5318 (2012)
https://doi.org/10.1021/nl302650t
|
20 |
J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, Self-assembled plasmonic nanoparticle clusters, Science 328(5982), 1135 (2010)
https://doi.org/10.1126/science.1187949
|
21 |
N. Liu, S. Mukherjee, K. Bao, Y. Li, L. V. Brown, P. Nordlander, and N. J. Halas, Manipulating magnetic plasmon propagation in metallic nanocluster networks, ACS Nano 6(6): 5482 (2012)
https://doi.org/10.1021/nn301393x
|
22 |
B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, The Fano resonance in plasmonic nanostructures and metamaterials, Nat. Mater. 9(9), 707 (2010)
https://doi.org/10.1038/nmat2810
|
23 |
Z. Fan, H. Zhang, and A. O. Govorov, Optical properties of chiral plasmonic tetramers: Circular dichroism and multipole effects, J. Phys. Chem. C 117(28), 14770 (2013)
https://doi.org/10.1021/jp404987v
|
24 |
B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, Revisiting the physics of Fano resonances for nanoparticle oligomers, Phys. Rev. A 88(5), 053819 (2013)
https://doi.org/10.1103/PhysRevA.88.053819
|
25 |
E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, A hybridization model for the plasmon response of complex nanostructures, Science 302(5644), 419 (2003)
https://doi.org/10.1126/science.1089171
|
26 |
P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, Plasmon hybridization in nanoparticle dimers, Nano Lett. 4(5), 899 (2004)
https://doi.org/10.1021/nl049681c
|
27 |
H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures, Phys. Rev. B 76(7), 073101 (2007)
https://doi.org/10.1103/PhysRevB.76.073101
|
28 |
M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, Excitation of dark plasmons in metal nanoparticles by a localized emitter, Phys. Rev. Lett. 102(10), 107401 (2009)
https://doi.org/10.1103/PhysRevLett.102.107401
|
29 |
Z. Nie, A. Petukhova, and E. Kumacheva, Properties and emerging applications of self-assembled structures made from inorganic nanoparticles, Nat. Nanotechnol. 5, 15 (2010)
https://doi.org/10.1038/nnano.2009.453
|
30 |
E. Prodan and P. Nordlander, Plasmon hybridization in spherical nanoparticles, J. Chem. Phys. 120(11), 5444 (2004)
https://doi.org/10.1063/1.1647518
|
31 |
Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities, ACS Nano 4(3), 1664 (2010)
https://doi.org/10.1021/nn901580r
|
32 |
J. Ye, P. Van Dorpe, L. Lagae, G. Maes, and G. Borghs, Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures, Nanotechnology 20(46), 465203 (2009)
https://doi.org/10.1088/0957-4484/20/46/465203
|
33 |
C. M. Sweeney, C. L. Stender, C. L. Nehl, W. Hasan, K. L. Shuford, and T. W. Odom, Optical properties of tipless gold nanopyramids, Small 7(14), 2032 (2011)
https://doi.org/10.1002/smll.201100758
|
34 |
C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, and P. Nordlander, Magnetictplasmonic coretshell nanoparticles, ACS Nano 3, 1379 (2009)
https://doi.org/10.1021/nn900118a
|
35 |
T. Ambjornsson, G. Mukhopadhyay, S. P. Apell, and M. Kall, Resonant coupling between localized plasmons and anisotropic molecular coatings in ellipsoidal metal nanoparticles, Phys. Rev. B 73, 085412 (2006)
https://doi.org/10.1103/PhysRevB.73.085412
|
36 |
W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. A. Link, A plasmonic fano switch, Nano Lett. 12(9), 4977 (2012)
https://doi.org/10.1021/nl302610v
|
37 |
F. López-Tejeira, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, Fano-like interference of plasmon resonances at a single rod-shaped nanoantennas, New J. Phys. 14, 023035 (2012)
https://doi.org/10.1088/1367-2630/14/2/023035
|
38 |
J. Zhao, J. Z. Yang, P. P. Zhu, C. Sun, and J. Xu, A comparative study of the effects of sulfate reducing bacteria on corrosion of carbon steel Q235 under simulated disbonded coating with different width of aperture, Adv. Mater. Res. 503-504, 247 (2012)
https://doi.org/10.4028/www.scientific.net/AMR.503-504.247
|
39 |
Z. Chen, R. Hu, L. Cui, L. Yu, L. Wang, and J. Xiao, Plasmonic wavelength demultiplexers based on tunable Fano resonance in coupled-resonator systems, Opt. Commun. 320, 6 (2014)
https://doi.org/10.1016/j.optcom.2013.12.079
|
40 |
E. D. Palik, Handbook of Optical Constant of Solids, London: Academic Press, 1991
|
41 |
E. D. Palik and G. Ghosh, The Electronic Handbook of Optical Constants of Solids, London: Academic Press, 1999
|
42 |
D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method, New Jersey: Wiley & Sons, 2013
https://doi.org/10.1002/9781118646700
|
43 |
U. S. Inan and R. A. Marshall, Numerical Electromagnetic: The FDTD Method, New York: Cambridge University Press, 2011
https://doi.org/10.1017/CBO9780511921353
|
44 |
J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability, Nano Lett. 10(8), 3184 (2010)
https://doi.org/10.1021/nl102108u
|
45 |
Y. Shao, S. Xu, X. Zheng, Y. Wang, and W. Xu, Optical fiber LSPR biosensor prepared by gold nanoparticle assembly on polyelectrolyte multilayer, Sensors 10(4), 3585 (2010)
https://doi.org/10.3390/s100403585
|
46 |
Y. Q. Chen and C. J. Lu, Surface modification on silver nanoparticles for enhancing vapor selectivity of localized surface plasmon resonance sensors, Sens. Actuators B 135(2), 492 (2009)
https://doi.org/10.1016/j.snb.2008.09.030
|
47 |
J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. V. Dorpe, P. Nordlander, and N. J. Halas, Plasmonic nanoclusters: Near field properties of the fano resonance interrogated with SERS, Nano Lett. 12(3), 1660 (2012)
https://doi.org/10.1021/nl3000453
|
48 |
E. M. Larsson, J. Alegret, M. K?ll, and D. S. Sutherland, Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors, Nano Lett. 7(5), 1256 (2007)
https://doi.org/10.1021/nl0701612
|
49 |
L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, Localized surface plasmon resonance spectroscopy of single silver nanocubes, Nano Lett. 5(10), 2034 (2005)
https://doi.org/10.1021/nl0515753
|
50 |
F. Hao, Y. Sonnefraud, P. V. Drope, S. A. Maier, N. J. Halas, and P. Nordlander, Symmetry breaking in plasmonic nanocavities: Subradiant LSPR sensing and a tunable fano resonance, Nano Lett. 8(11), 3983 (2008)
https://doi.org/10.1021/nl802509r
|
51 |
N. Liu, T. Wiess, M. Mesch, L. Langguth, U. Eignthaler, M. Hirscher, C. S?nnichsen, and H. Giessen, Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing, Nano Lett. 10(4), 1103 (2010)
https://doi.org/10.1021/nl902621d
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|