|
|
|
A computational investigation of topological insulator Bi2Se3 film |
Yi-Bin Hu1( ), Yong-Hong Zhao2, Xue-Feng Wang3 |
1. Department of Physics, McGill University, 3600 rue University, Montréal, Québec, H3A 2T8, Canada 2. College of Physics and Electronic Engineering, Institute of Solid State Physics, Sichuan Normal University, Chengdu 610068, China 3. Department of Physics, Soochow University, Suzhou 215006, China |
|
|
|
|
Abstract Topological insulators have a bulk band gap like an ordinary insulator and conducting states on their edge or surface which are formed by spin–orbit coupling and protected by time-reversal symmetry. We report theoretical analyses of the electronic properties of three-dimensional topological insulator Bi2Se3 film on different energies. We choose five different energies (–123, –75, 0, 180, 350 meV) around the Dirac cone (–113 meV). When energy is close to the Dirac cone, the properties of wave function match the topological insulator’s hallmark perfectly. When energy is far way from the Dirac cone, the hallmark of topological insulator is broken and the helical states disappear. The electronic properties of helical states are dug out from the calculation results. The spin-momentum locking of the helical states are confirmed. A 3-fold symmetry of the helical states in Brillouin zone is also revealed. The penetration depth of the helical states is two quintuple layers which can be identified from layer projection. The charge contribution on each quintuple layer depends on the energy, and has completely different behavior along K and M direction in Brillouin zone. From orbital projection, we can find that the maximum charge contribution of the helical states is pz orbit and the charge contribution on pyand px orbits have 2-fold symmetry.
|
| Keywords
topological insulator
spin–orbit coupling
helical state
|
|
Corresponding Author(s):
Yi-Bin Hu
|
|
Issue Date: 24 December 2014
|
|
| 1 |
C. L. Kane and E. J. Mele, Z2 topological order and the quantum spin Hall effect, Phys. Rev. Lett., 2005, 95(14): 146802
https://doi.org/10.1103/PhysRevLett.95.146802
|
| 2 |
B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Quantumu spin Hall effect and topological phase transition in HgTe quantum wells, Science, 2006, 314(5806): 1757
https://doi.org/10.1126/science.1133734
|
| 3 |
M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys., 2010, 82(4): 3045
https://doi.org/10.1103/RevModPhys.82.3045
|
| 4 |
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys., 2011, 83(4): 1057
https://doi.org/10.1103/RevModPhys.83.1057
|
| 5 |
X. L. Qi and S. C. Zhang, The quantum spin Hall effect and topological insulators, Phys. Today, 2010, 63(1): 33
https://doi.org/10.1063/1.3293411
|
| 6 |
J. E. Moore, The birth of topological insulators, Nature, 2010, 464(7286): 194
https://doi.org/10.1038/nature08916
|
| 7 |
L. Fu and C. L. Kane, Topological insulators with inversion symmetry, Phys. Rev. B, 2007, 76(4): 045302
https://doi.org/10.1103/PhysRevB.76.045302
|
| 8 |
X. L. Qi, T. L. Hughes, and S. C. Zhang, Topological field theory of time-reversal invariant insulators, Phys. Rev. B, 2008, 78(19): 195424
https://doi.org/10.1103/PhysRevB.78.195424
|
| 9 |
Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Observation of a large-gap topological-insulator class with a single Dirac cone on the surface, Nat. Phys., 2009, 5(6): 398
https://doi.org/10.1038/nphys1274
|
| 10 |
H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nat. Phys., 2009, 5(6): 438
https://doi.org/10.1038/nphys1270
|
| 11 |
D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. H. Dil, J. Osterwalder, L. Patthey, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Observation of time-reversal-protected single-Dirac-cone topologicalinsulator states in Bi2Te3 and Sb2Te3, Phys. Rev. Lett., 2009, 103(14): 146401
https://doi.org/10.1103/PhysRevLett.103.146401
|
| 12 |
K. He, Y. Zhang, K. He, C. Z. Chang, C. L. Song, L. L. Wang, X. Chen, J. F. Jia, Z. Fang, X. Dai, W. Y. Shan, S. Q. Shen, Q. Niu, X. L. Qi, S. C. Zhang, X. C. Ma, and Q. K. Xue, Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit, Nat. Phys., 2010, 6(8): 584
https://doi.org/10.1038/nphys1689
|
| 13 |
D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, A tunable topological insulator in the spin helical Dirac transport regime, Nature, 2009, 460(7259): 1101
https://doi.org/10.1038/nature08234
|
| 14 |
Y. S. Hor, A. Richardella, P. Roushan, Y. Xia, J. G. Checkelsky, A. Yazdani, M. Z. Hasan, N. P. Ong, and R. J. Cava, p-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications, Phys. Rev. B, 2009, 79(19): 195208
https://doi.org/10.1103/PhysRevB.79.195208
|
| 15 |
S. R. Park, W. S. Jung, C. Kim, D. J. Song, C. Kim, S. Kimura, K. D. Lee, and N. Hur, Quasiparticle scattering and the protected nature of the topological states in a parent topological insulator Bi2Se3, Phys. Rev. B, 2010, 81: 041405(R)
https://doi.org/10.1103/PhysRevB.81.041405
|
| 16 |
C. X. Liu, X. L. Qi, H. J. Zhang, X. Dai, Z. Fang, and S. C. Zhang, Model Hamiltonian for topological insulators, Phys. Rev. B, 2010, 82(4): 045122
https://doi.org/10.1103/PhysRevB.82.045122
|
| 17 |
W. Zhang, R. Yu, S. J. Zhang, X. Dai, and Z. Fang, Firstprinciples studies of the three-dimensional strong topological insulators Bi2Te3, Bi2Se3 and Sb2Te3, New J. Phys., 2010, 12(6): 065013
https://doi.org/10.1088/1367-2630/12/6/065013
|
| 18 |
Jeongwoo Kim, Jinwoong Kim, and Seung-Hoon Jhi, Prediction of topological insulating behavior in crystalline Ge-Sb-Te, Phys. Rev. B, 2010, 82: 201312(R)
https://doi.org/10.1103/PhysRevB.82.201312
|
| 19 |
O. V. Yazyev, J. E. Moore, and S. G. Louie, Spin polarization and transport of surface states in the topological insulators Bi2Se3 and Bi2Te3 from first principles, Phys. Rev. Lett., 2010, 105(26): 266806
https://doi.org/10.1103/PhysRevLett.105.266806
|
| 20 |
Z. Alpichshev, J. G. Analytis, J.-H. Chu, I. R. Fisher, Y. L. Chen, Z. X. Shen, A. Fang, and A. Kapitulnik, STM imaging of electronic waves on the surface of Bi2Te3: Topologically protected surface states and hexagonal warping effects, Phys. Rev. Lett., 2010, 104(1): 016401
https://doi.org/10.1103/PhysRevLett.104.016401
|
| 21 |
Y. H. Zhao, Y. B. Hu, L. Liu, Y. Zhu, and H. Guo, Helical states of topological insulator Bi2Se3, Nano Lett., 2011, 11(5): 2088
https://doi.org/10.1021/nl200584f
|
| 22 |
R. Yu, W. Zhang, H. J. Zhang, S. C. Zhang, X. Dai, and Z. Fang, Quantized anomalous Hall effect in magnetic topological insulators, Science, 2010, 329(5987): 61
https://doi.org/10.1126/science.1187485
|
| 23 |
T. M. Schmidt, R. H. Miwa, and A. Fazzio, Spin texture and magnetic anisotropy of Co impurities in Bi2Se3 topological insulators, Phys. Rev. B, 2011, 84(24): 245418
https://doi.org/10.1103/PhysRevB.84.245418
|
| 24 |
P. Blaha, K. Schwarz, P. Sorantin, and S. B. Trickey, Fullpotential, linearized augmented plane wave programs for crystalline systems, Comput. Phys. Commun., 1990, 59(2): 399
https://doi.org/10.1016/0010-4655(90)90187-6
|
| 25 |
Nanodcal is developed by NanoAcademic Technologies Inc. Nanodcal is an LCAO implementation of density functional theory within the Keldysh nonequilibrium Greens function formalism. It is a general purpose tool for ab initio modeling of electronic structure, equilibrium and non-equilibrium quantum transport.
|
| 26 |
J. Taylor, H. Guo, and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B, 2001, 63(24): 245407
https://doi.org/10.1103/PhysRevB.63.245407
|
| 27 |
L. Kleinman and D. M. Bylander, Efficacious form for model pseudopotentials, Phys. Rev. Lett., 1982, 48(20): 1425
https://doi.org/10.1103/PhysRevLett.48.1425
|
| 28 |
G. Theurich and N. A. Hill, Self-consistent treatment of spinorbit coupling in solids using relativistic fully separable ab initio pseudopotentials, Phys. Rev. B, 2001, 64(7): 073106
https://doi.org/10.1103/PhysRevB.64.073106
|
| 29 |
L. Fernández-Seivane, M. A. Oliveria, S. Sanvito, and J. Ferrer, On-site approximation for spin–orbit coupling in linear combination of atomic orbitals density functional methods, J. Phys.: Condens. Matter, 2006, 18(34): 7999
https://doi.org/10.1088/0953-8984/18/34/012
|
| 30 |
J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B, 1992, 45(23): 13244
https://doi.org/10.1103/PhysRevB.45.13244
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|