Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2014, Vol. 9 Issue (6) : 760-767    https://doi.org/10.1007/s11467-014-0441-1
RESEARCH ARTICLE
A computational investigation of topological insulator Bi2Se3 film
Yi-Bin Hu1(), Yong-Hong Zhao2, Xue-Feng Wang3
1. Department of Physics, McGill University, 3600 rue University, Montréal, Québec, H3A 2T8, Canada
2. College of Physics and Electronic Engineering, Institute of Solid State Physics, Sichuan Normal University, Chengdu 610068, China
3. Department of Physics, Soochow University, Suzhou 215006, China
 Download: PDF(424 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Topological insulators have a bulk band gap like an ordinary insulator and conducting states on their edge or surface which are formed by spin–orbit coupling and protected by time-reversal symmetry. We report theoretical analyses of the electronic properties of three-dimensional topological insulator Bi2Se3 film on different energies. We choose five different energies (–123, –75, 0, 180, 350 meV) around the Dirac cone (–113 meV). When energy is close to the Dirac cone, the properties of wave function match the topological insulator’s hallmark perfectly. When energy is far way from the Dirac cone, the hallmark of topological insulator is broken and the helical states disappear. The electronic properties of helical states are dug out from the calculation results. The spin-momentum locking of the helical states are confirmed. A 3-fold symmetry of the helical states in Brillouin zone is also revealed. The penetration depth of the helical states is two quintuple layers which can be identified from layer projection. The charge contribution on each quintuple layer depends on the energy, and has completely different behavior along K and M direction in Brillouin zone. From orbital projection, we can find that the maximum charge contribution of the helical states is pz orbit and the charge contribution on pyand px orbits have 2-fold symmetry.

Keywords topological insulator      spin–orbit coupling      helical state     
Corresponding Author(s): Yi-Bin Hu   
Issue Date: 24 December 2014
 Cite this article:   
Yi-Bin Hu,Yong-Hong Zhao,Xue-Feng Wang. A computational investigation of topological insulator Bi2Se3 film[J]. Front. Phys. , 2014, 9(6): 760-767.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-014-0441-1
https://academic.hep.com.cn/fop/EN/Y2014/V9/I6/760
1 C. L. Kane and E. J. Mele, Z2 topological order and the quantum spin Hall effect, Phys. Rev. Lett., 2005, 95(14): 146802
https://doi.org/10.1103/PhysRevLett.95.146802
2 B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Quantumu spin Hall effect and topological phase transition in HgTe quantum wells, Science, 2006, 314(5806): 1757
https://doi.org/10.1126/science.1133734
3 M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys., 2010, 82(4): 3045
https://doi.org/10.1103/RevModPhys.82.3045
4 X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys., 2011, 83(4): 1057
https://doi.org/10.1103/RevModPhys.83.1057
5 X. L. Qi and S. C. Zhang, The quantum spin Hall effect and topological insulators, Phys. Today, 2010, 63(1): 33
https://doi.org/10.1063/1.3293411
6 J. E. Moore, The birth of topological insulators, Nature, 2010, 464(7286): 194
https://doi.org/10.1038/nature08916
7 L. Fu and C. L. Kane, Topological insulators with inversion symmetry, Phys. Rev. B, 2007, 76(4): 045302
https://doi.org/10.1103/PhysRevB.76.045302
8 X. L. Qi, T. L. Hughes, and S. C. Zhang, Topological field theory of time-reversal invariant insulators, Phys. Rev. B, 2008, 78(19): 195424
https://doi.org/10.1103/PhysRevB.78.195424
9 Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Observation of a large-gap topological-insulator class with a single Dirac cone on the surface, Nat. Phys., 2009, 5(6): 398
https://doi.org/10.1038/nphys1274
10 H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nat. Phys., 2009, 5(6): 438
https://doi.org/10.1038/nphys1270
11 D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. H. Dil, J. Osterwalder, L. Patthey, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Observation of time-reversal-protected single-Dirac-cone topologicalinsulator states in Bi2Te3 and Sb2Te3, Phys. Rev. Lett., 2009, 103(14): 146401
https://doi.org/10.1103/PhysRevLett.103.146401
12 K. He, Y. Zhang, K. He, C. Z. Chang, C. L. Song, L. L. Wang, X. Chen, J. F. Jia, Z. Fang, X. Dai, W. Y. Shan, S. Q. Shen, Q. Niu, X. L. Qi, S. C. Zhang, X. C. Ma, and Q. K. Xue, Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit, Nat. Phys., 2010, 6(8): 584
https://doi.org/10.1038/nphys1689
13 D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, A tunable topological insulator in the spin helical Dirac transport regime, Nature, 2009, 460(7259): 1101
https://doi.org/10.1038/nature08234
14 Y. S. Hor, A. Richardella, P. Roushan, Y. Xia, J. G. Checkelsky, A. Yazdani, M. Z. Hasan, N. P. Ong, and R. J. Cava, p-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications, Phys. Rev. B, 2009, 79(19): 195208
https://doi.org/10.1103/PhysRevB.79.195208
15 S. R. Park, W. S. Jung, C. Kim, D. J. Song, C. Kim, S. Kimura, K. D. Lee, and N. Hur, Quasiparticle scattering and the protected nature of the topological states in a parent topological insulator Bi2Se3, Phys. Rev. B, 2010, 81: 041405(R)
https://doi.org/10.1103/PhysRevB.81.041405
16 C. X. Liu, X. L. Qi, H. J. Zhang, X. Dai, Z. Fang, and S. C. Zhang, Model Hamiltonian for topological insulators, Phys. Rev. B, 2010, 82(4): 045122
https://doi.org/10.1103/PhysRevB.82.045122
17 W. Zhang, R. Yu, S. J. Zhang, X. Dai, and Z. Fang, Firstprinciples studies of the three-dimensional strong topological insulators Bi2Te3, Bi2Se3 and Sb2Te3, New J. Phys., 2010, 12(6): 065013
https://doi.org/10.1088/1367-2630/12/6/065013
18 Jeongwoo Kim, Jinwoong Kim, and Seung-Hoon Jhi, Prediction of topological insulating behavior in crystalline Ge-Sb-Te, Phys. Rev. B, 2010, 82: 201312(R)
https://doi.org/10.1103/PhysRevB.82.201312
19 O. V. Yazyev, J. E. Moore, and S. G. Louie, Spin polarization and transport of surface states in the topological insulators Bi2Se3 and Bi2Te3 from first principles, Phys. Rev. Lett., 2010, 105(26): 266806
https://doi.org/10.1103/PhysRevLett.105.266806
20 Z. Alpichshev, J. G. Analytis, J.-H. Chu, I. R. Fisher, Y. L. Chen, Z. X. Shen, A. Fang, and A. Kapitulnik, STM imaging of electronic waves on the surface of Bi2Te3: Topologically protected surface states and hexagonal warping effects, Phys. Rev. Lett., 2010, 104(1): 016401
https://doi.org/10.1103/PhysRevLett.104.016401
21 Y. H. Zhao, Y. B. Hu, L. Liu, Y. Zhu, and H. Guo, Helical states of topological insulator Bi2Se3, Nano Lett., 2011, 11(5): 2088
https://doi.org/10.1021/nl200584f
22 R. Yu, W. Zhang, H. J. Zhang, S. C. Zhang, X. Dai, and Z. Fang, Quantized anomalous Hall effect in magnetic topological insulators, Science, 2010, 329(5987): 61
https://doi.org/10.1126/science.1187485
23 T. M. Schmidt, R. H. Miwa, and A. Fazzio, Spin texture and magnetic anisotropy of Co impurities in Bi2Se3 topological insulators, Phys. Rev. B, 2011, 84(24): 245418
https://doi.org/10.1103/PhysRevB.84.245418
24 P. Blaha, K. Schwarz, P. Sorantin, and S. B. Trickey, Fullpotential, linearized augmented plane wave programs for crystalline systems, Comput. Phys. Commun., 1990, 59(2): 399
https://doi.org/10.1016/0010-4655(90)90187-6
25 Nanodcal is developed by NanoAcademic Technologies Inc. Nanodcal is an LCAO implementation of density functional theory within the Keldysh nonequilibrium Greens function formalism. It is a general purpose tool for ab initio modeling of electronic structure, equilibrium and non-equilibrium quantum transport.
26 J. Taylor, H. Guo, and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B, 2001, 63(24): 245407
https://doi.org/10.1103/PhysRevB.63.245407
27 L. Kleinman and D. M. Bylander, Efficacious form for model pseudopotentials, Phys. Rev. Lett., 1982, 48(20): 1425
https://doi.org/10.1103/PhysRevLett.48.1425
28 G. Theurich and N. A. Hill, Self-consistent treatment of spinorbit coupling in solids using relativistic fully separable ab initio pseudopotentials, Phys. Rev. B, 2001, 64(7): 073106
https://doi.org/10.1103/PhysRevB.64.073106
29 L. Fernández-Seivane, M. A. Oliveria, S. Sanvito, and J. Ferrer, On-site approximation for spin–orbit coupling in linear combination of atomic orbitals density functional methods, J. Phys.: Condens. Matter, 2006, 18(34): 7999
https://doi.org/10.1088/0953-8984/18/34/012
30 J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B, 1992, 45(23): 13244
https://doi.org/10.1103/PhysRevB.45.13244
[1] Yiqing Tian, Yiqi Zhang, Yongdong Li, R. Belić Milivoj. Vector valley Hall edge solitons in the photonic lattice with type-II Dirac cones[J]. Front. Phys. , 2022, 17(5): 53503-.
[2] Kai-Tong Wang, Fuming Xu, Bin Wang, Yunjin Yu, Yadong Wei. Transport features of topological corner states in honeycomb lattice with multihollow structure[J]. Front. Phys. , 2022, 17(4): 43501-.
[3] Jiahao Fan, Huaqing Huang. Topological states in quasicrystals[J]. Front. Phys. , 2022, 17(1): 13203-.
[4] Chengyong Zhong. Predication of topological states in the allotropes of group-IV elements[J]. Front. Phys. , 2021, 16(6): 63503-.
[5] Chen-Xiao Zhao (赵晨晓), Jin-Feng Jia (贾金锋). Stanene: A good platform for topological insulator and topological superconductor[J]. Front. Phys. , 2020, 15(5): 53201-.
[6] Chang-Yong Zhu, Shi-Han Zheng, Hou-Jian Duan, Ming-Xun Deng, Rui-Qiang Wang. Double Andreev reflections at surface states of the topological insulators with hexagonal warping[J]. Front. Phys. , 2020, 15(2): 23602-.
[7] Y. X. Zhao. Equivariant PT-symmetric real Chern insulators[J]. Front. Phys. , 2020, 15(1): 13603-.
[8] Mengyun He, Huimin Sun, Qing Lin He. Topological insulator: Spintronics and quantum computations[J]. Front. Phys. , 2019, 14(4): 43401-.
[9] Junjie Qi, Haiwen Liu, Hua Jiang, X. C. Xie. Dephasing effects in topological insulators[J]. Front. Phys. , 2019, 14(4): 43403-.
[10] Hai-Peng Sun, Hai-Zhou Lu. Quantum transport in topological semimetals under magnetic fields (II)[J]. Front. Phys. , 2019, 14(3): 33405-.
[11] Yu-E Li, Ju-Kui Xue. Stationary and moving solitons in spin–orbit-coupled spin-1 Bose–Einstein condensates[J]. Front. Phys. , 2018, 13(2): 130307-.
[12] Dingping Li, Baruch Rosenstein, B. Ya. Shapiro, I. Shapiro. Chiral universality class of normal-superconducting and exciton condensation transitions on surface of topological insulator[J]. Front. Phys. , 2015, 10(3): 107402-.
[13] Ming Yang, Xiao-Long Zhang, Wu-Ming Liu. Tunable topological quantum states in three- and two-dimensional materials[J]. Front. Phys. , 2015, 10(2): 108102-.
[14] Ying Xing (邢颖), Yi Sun (孙祎), Meenakshi Singh, Yan-Fei Zhao (赵弇斐), Moses H. W. Chan, Jian Wang (王健). Electronic transport properties of topological insulator films and low dimensional superconductors[J]. Front. Phys. , 2013, 8(5): 491-508.
[15] Kevin Walker, Zhenghan Wang. (3+1)-TQFTs and topological insulators[J]. Front. Phys. , 2012, 7(2): 150-159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed