Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2015, Vol. 10 Issue (2) : 100302    https://doi.org/10.1007/s11467-014-0457-6
RESEARCH ARTICLE
On the entangled fractional squeezing transformation
Hong-Yi Fan1(),Jun-Hua Chen2,*(),Peng-Fei Zhang3
1. Department of Physics, Ningbo University, Ningbo 315211, China
2. Department of Material Science and Engineering, University of Science and Technology of China, Hefei 230026, China
3. Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
 Download: PDF(159 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We propose an entangled fractional squeezing transformation (EFrST) generated by using two mutually conjugate entangled state representations with the following operator: e-iα(a1?a2?+a1a2)eiπa2?a2; this transformation sharply contrasts the complex fractional Fourier transformation produced by using e-iα(a1?a2?+a2?a2)eiπa2?a2 (see Front. Phys. DOI 10.1007/s11467-014-0445-x). The EFrST is obtained by converting the triangular functions in the integration kernel of the usual fractional Fourier transformation into hyperbolic functions, i.e., tanα → tanhα and sinα → sinhα. The fractional property of the EFrST can be well described by virtue of the properties of the entangled state representations.

Keywords entangled fractional squeezing transformation      entangled state representation      squeezing operator      core operator     
Corresponding Author(s): Jun-Hua Chen   
Issue Date: 13 March 2015
 Cite this article:   
Hong-Yi Fan,Jun-Hua Chen,Peng-Fei Zhang. On the entangled fractional squeezing transformation[J]. Front. Phys. , 2015, 10(2): 100302.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-014-0457-6
https://academic.hep.com.cn/fop/EN/Y2015/V10/I2/100302
1 V. Namias, The fractional order Fourier transform and its application to quantum mechanics, J. Inst. Math. Its Appl. 25, 241 (1980)
https://doi.org/10.1093/imamat/25.3.241
2 D. Mendlovic, H. M. Ozaktas, and A. W. Lohmmann, Graded-index fiber, Wigner-distribution functions, and the fractional Fourier transform, Appl. Opt., 33, 6188 (1994)
https://doi.org/10.1364/AO.33.006188
3 H. Y. Fan and L. Y. Hu, Correspondence between quantumoptical transform and classical-optical transform explored by developing Dirac’s symbolic method, Front. Phys. 7(3), 261 (2012)
https://doi.org/10.1007/s11467-011-0206-z
4 H. Y. Fan and J. R. Klauder, Eigenvectors of two particles’ relative position and total momentum, Phys. Rev. A 49, 704-707 (1994)
https://doi.org/10.1103/PhysRevA.49.704
5 H.-Y. Fan and S.-Y. Lou, Studying bi-partite entangled state representations via the integration over ket–bra operators in Q-ordering or P-ordering, Front. Phys. 9(4), 460-464 (2014)
https://doi.org/10.1007/s11467-013-0397-6
6 H.-Y. Fan and J.-H. Chen, On the core of fractional Fourier transform and its role in composing complex fractional Fourier transformation and Fresnel transformation, Front. Phys. (2014)
https://doi.org/10.1007/s11467-014-0445-x
7 R. Loudon and P. L. Knight, Squeezed states, J. Mod. Opt. 34, 709 (1987)
https://doi.org/10.1080/09500348714550721
8 H.-Y. Fan and J. R. Klauder, Canonical coherent state representation of squeeze operators, J. Phys. A: Math. Gen. 21, L725 (1988)
https://doi.org/10.1088/0305-4470/21/14/003
9 H.-Y. Fan, Operator ordering in quantum optics theory and the development of Dirac’s symbolic method, J. Opt. B: Quantum Semiclassical Opt. 5, R147 (2003)
https://doi.org/10.1088/1464-4266/5/4/201
10 A. Wünsche, About integration within ordered products in quantum optics, J. Opt. B: Quantum Semiclassical Opt. 2, R11 (2000)
11 A. Sinatra, J.-C. Dornstetter, and Y. Castin, Spin squeezing in Bose–Einstein condensates: Limits imposed by decoherence and non-zero temperature, Front. Phys. 7(1), 86 (2012)
https://doi.org/10.1007/s11467-011-0219-7
[1] Xiang-Guo Meng, Ji-Suo Wang, Bao-Long Liang, Cheng-Xuan Han. Evolution of a two-mode squeezed vacuum for amplitude decay via continuous-variable entangled state approach[J]. Front. Phys. , 2018, 13(5): 130322-.
[2] Fang Jia,Shuang Xu,Cheng-Zhi Deng,Cun-Jin Liu,Li-Yun Hu. 3D entangled fractional squeezing transformation and its quantum mechanical correspondence[J]. Front. Phys. , 2016, 11(3): 110302-.
[3] Hong-Yi Fan, Jun-Hua Chen. On the core of the fractional Fourier transform and its role in composing complex fractional Fourier transformations and Fresnel transformations[J]. Front. Phys. , 2015, 10(1): 100301-.
[4] Hong-Yi Fan,Sen-Yue Lou. Studying bi-partite entangled state representations via the integration over ket–bra operators in Q-ordering or P-ordering[J]. Front. Phys. , 2014, 9(4): 460-464.
[5] Hong-Yi Fan, Shuai Wang, Li-Yun Hu. Evolution of the single-mode squeezed vacuum state in amplitude dissipative channel[J]. Front. Phys. , 2014, 9(1): 74-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed