Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2015, Vol. 10 Issue (2) : 100303    https://doi.org/10.1007/s11467-015-0460-6
RESEARCH ARTICLE
Twice-Hadamard-CNOT attack on Li et al.’s fault-tolerant quantum private comparison and the improved scheme
Ji Sai(季赛)1,2,Wang Fang(王芳)2,Liu Wen-Jie(刘文杰)1,2,*(),Yuan Xiao-Min(袁晓敏)2
1. Jiangsu Engineering Center of Network Monitoring, Nanjing University of Information Science & Technology, Nanjing 210044, China
2. School of Computer and Software, Nanjing University of Information Science & Technology, Nanjing 210044, China
 Download: PDF(200 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Recently, Li et al. presented a two-party quantum private comparison scheme using Greenberger–Horne–Zeilinger (GHZ) states and error-correcting code (ECC) [Int. J. Theor. Phys. 52, 2818 (2013)], claiming it is fault-tolerant and could be performed in a non-ideal scenario. However, there exists a fatal loophole in their private comparison scheme under a special attack, namely the twice-Hadamard-CNOT attack. Specifically, a malicious party may intercept the other party’s particles and execute Hadamard operations on the intercepted particles as well as on his or her own particles. Then, the malicious party could sequentially perform a controlled-NOT (CNOT) operation between intercepted particles and the auxiliary particles, as well as between his or her own particles and the auxiliary particles prepared in advance. By measuring the auxiliary particles, the secret input will be revealed to the malicious party without being detected. For resisting this special attack, a feasible improved scheme is proposed by introducing a permutation operator before the third party (TP) sends the particle sequences to each participant.

Keywords quantum private comparison      GHZ state      twice-Hadamard-CNOT attack      improved scheme     
Corresponding Author(s): Liu Wen-Jie(刘文杰)   
Issue Date: 13 March 2015
 Cite this article:   
Ji Sai(季赛),Wang Fang(王芳),Liu Wen-Jie(刘文杰), et al. Twice-Hadamard-CNOT attack on Li et al.’s fault-tolerant quantum private comparison and the improved scheme[J]. Front. Phys. , 2015, 10(2): 100303.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-015-0460-6
https://academic.hep.com.cn/fop/EN/Y2015/V10/I2/100303
1 C. H. Bennett and G. Brassard, Quantum cryptography: Public-key distribution and coin tossing, In: Proceedings of IEEE International conference on Computers,Systems and Signal Processing, IEEE Press, New York, Bangalore, 1984, pp 175-179
2 A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67(6), 661 (1991)
https://doi.org/10.1103/PhysRevLett.67.661
3 L. M. Liang, S. H. Sun, M. S. Jiang, and C. Y. Li, Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices, Front. Phys. 9(5), 613 (2014)
https://doi.org/10.1007/s11467-014-0420-6
4 G. L. Long and X. S. Liu, Theoretically efficient highcapacity quantum-key distribution scheme, Phys. Rev. A 65(3), 032302 (2002)
https://doi.org/10.1103/PhysRevA.65.032302
5 F. G. Deng, G. L. Long, and X. S. Liu, Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block, Phys. Rev. A 68(4), 042317 (2003)
https://doi.org/10.1103/PhysRevA.68.042317
6 F. G. Deng and G. L. Long, Secure direct communication with a quantum onetime pad, Phys. Rev. A 69(5), 052319 (2004)
https://doi.org/10.1103/PhysRevA.69.052319
7 G. L. Long, F. G. Deng, C. Wang, K. Wen, W. Y. Wang, and X. H. Li, Quantum secure direct communication and deterministic secure quantum communication, Front. Phys. China 2(3), 251 (2007)
https://doi.org/10.1007/s11467-007-0050-3
8 W. J. Liu, H. W. Chen, Z. Q. Li, and Z. H. Liu, Efficient quantum secure direct communication with authentication, Chin. Phys. Lett. 25(7), 2354 (2008)
https://doi.org/10.1088/0256-307X/25/7/007
9 W. J. Liu, H. W. Chen, T. H. Ma, Z. Q. Li, Z. H. Liu, and W. B. Hu, An efficient deterministic secure quantum communication scheme based on cluster states and identity authentication, Chinese Phys. B 18(10), 4105 (2009)
https://doi.org/10.1088/1674-1056/18/10/007
10 Y. Chang, C. Xu, S. Zhang, and L. Yan, Controlled quantum secure direct communication and authentication protocol based on five-particle cluster state and quantum one-time pad, Chin. Sci. Bull. 59(21), 2541 (2014)
https://doi.org/10.1007/s11434-014-0339-x
11 R. Cleve, D. Gottesman, and H. K. Lo, How to share a quantum secret, Phys. Rev. Lett. 83(3), 648 (1999)
https://doi.org/10.1103/PhysRevLett.83.648
12 M. Hillery, V. Bu?ek, A. Berthiaume, V. Bu?ek, and A. Berthiaume, Quantum secret sharing, Phys. Rev. A 59(3), 1829 (1999)
https://doi.org/10.1103/PhysRevA.59.1829
13 J. Xu, H. W. Chen, W. J. Liu, and Z. H. Liu, Selection of unitary operations in quantum secret sharing without entanglement, Sci. China Inf. Sci. 54(9), 1837 (2011)
https://doi.org/10.1007/s11432-011-4240-9
14 D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, Experimental quantum teleportation, Nature 390(6660), 575 (1997)
https://doi.org/10.1038/37539
15 A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, Unconditional quantum teleportation, Science 282(5389), 706 (1998)
https://doi.org/10.1126/science.282.5389.706
16 A. Vidiella-Barranco and L. F. M. Borelli, Continuous variable quantum key distribution using polarized coherent states, Int. J. Mod. Phys. B 20, 1287 (2009)
17 C. D. Xie, J. Zhang, Q. Pan, X. J. Jia, and K. C. Peng, Continuous variable quantum communication with bright entangled optical beams, Front. Phys. China 1(4), 383 (2006)
https://doi.org/10.1007/s11467-006-0049-1
18 Y. G. Yang and Q. Y. Wen, An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement, J. Phys. A: Math. Theor. 42(5), 055305 (2009)
https://doi.org/10.1088/1751-8113/42/5/055305
19 X. B. Chen, G. Xu, X. X. Niu, Q. Y. Wen, and Y. X. Yang, An efficient protocol for the private comparison of equal information based on the triplet entangled state and singleparticle measurement, Opt. Commun. 283(7), 1561 (2010)
https://doi.org/10.1016/j.optcom.2009.11.085
20 H. Y. Jia, Q. Y. Wen, B. Y. Li, and F. Gao, Quantum private comparison using genuine four-particle entangled states, Int. J. Theor. Phys. 51(4), 1187 (2012)
https://doi.org/10.1007/s10773-011-0994-5
21 W. Liu and Y. B. Wang, Quantum private comparison based on GHZ entangled states, Int. J. Theor. Phys. 51(11), 3596 (2012)
https://doi.org/10.1007/s10773-012-1246-z
22 H. Y. Tseng, J. Lin, and T. Hwang, New quantum private comparison protocol using EPR pairs, Quantum Inf. Process. 11(2), 373 (2012)
https://doi.org/10.1007/s11128-011-0251-0
23 W. Huang, Q. Y. Wen, B. Liu, F. Gao, and Y. Sun, Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels, Sci. China Phys. Mech. 56(9), 1670 (2013)
https://doi.org/10.1007/s11433-013-5224-0
24 W. J. Liu, C. Liu, Z. H. Liu, J. F. Liu, and H. T. Geng, Same initial states attack in Yang et al.’s quantum private comparison protocol and the improvement, Int. J. Theor. Phys. 53(1), 271 (2014)
https://doi.org/10.1007/s10773-013-1807-9
25 W. J. Liu, C. Liu, H. W. Chen, Z. H. Liu, M. X. Yuan, and J. S. Lu, Improvement on “an efficient protocol for the quantum private comparison of equality with W state”, Int. J. Quantum Inf. 12(01), 1450001 (2014)
https://doi.org/10.1142/S0219749914500014
26 J. Lin, C. W. Yang, and T. Hwang, Quantum private comparison of equality protocol without a third party, Quantum Inf. Process. 13(2), 239 (2014)
https://doi.org/10.1007/s11128-013-0645-2
27 W. J. Liu, C. Liu, H. W. Chen, Z. Q. Li, and Z. H. Liu, Cryptanalysis and improvement of quantum private comparison protocol based on Bell entangled states, Commun. Theor. Phys. 62(2), 210 (2014)
https://doi.org/10.1088/0253-6102/62/2/07
28 Y. B. Li, T. Y. Wang, H. Y. Chen, M. D. Li, and Y. T. Yang, Fault-tolerate quantum private comparison based on GHZ states and ECC, Int. J. Theor. Phys. 52(8), 2818 (2013)
https://doi.org/10.1007/s10773-013-1573-8
29 W. J. Liu, C. Liu, H. B. Wang, and T. T. Jia, Quantum private comparison: A review, IETE Tech. Rev. 30(5), 439 (2013)
https://doi.org/10.4103/0256-4602.123129
30 C. Y. Lin and T. Hwang, CNOT extraction attack on “quantum asymmetric cryptography with symmetric keys”, Sci. China Phys. Mech. 57(5), 1001 (2014)
https://doi.org/10.1007/s11433-013-5290-3
31 Z. Y. Tong, P. Liao, and L. M. Kuang, Quantum repeaters based on CNOT gate under decoherence, Front. Phys. China 2(4), 389 (2007)
https://doi.org/10.1007/s11467-007-0061-0
32 J. Lin, H. Y. Tseng, and T. Hwang, Intercept-resend attacks on Chen et al.’s quantum private comparison protocol and the improvements, Opt. Commun. 284(9), 2412 (2011)
https://doi.org/10.1016/j.optcom.2010.12.070
33 W. W. Zhang and K. J. Zhang, Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party, Quantum Inf. Process. 12(5), 1981 (2013)
https://doi.org/10.1007/s11128-012-0507-3
[1] Pei-Ying Xiong,Xu-Tao Yu,Zai-Chen Zhang,Hai-Tao Zhan,Jing-Yu Hua. Routing protocol for wireless quantum multi-hop mesh backbone network based on partially entangled GHZ state[J]. Front. Phys. , 2017, 12(4): 120302-.
[2] Pei-Ying Xiong,Xu-Tao Yu,Hai-Tao Zhan,Zai-Chen Zhang. Multiple teleportation via partially entangled GHZ state[J]. Front. Phys. , 2016, 11(4): 110303-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed