|
|
Novel method to determine effective length of quantum confinement using fractional-dimension space approach |
Hua Li1,2,Bing-Can Liu2,Bing-Xin Shi1,Si-Yu Dong1,Qiang Tian1,*( ) |
1. Department of Physics, Beijing Normal University, Beijing 100875, China
2. Department of Fundamental Courses, Academy of Armored Forces Engineering, Beijing 100072, China |
|
|
Abstract The binding energy and effective mass of a polaron confined in a GaAs film deposited on an AlxGa1-x As substrate are investigated, for different film thickness values and aluminum concentrations and within the framework of the fractional-dimensional space approach. Using this scheme, we propose a new method to define the effective length of the quantum confinement. The limitations of the definition of the original effective well width are discussed, and the binding energy and effective mass of a polaron confined in a GaAs film are obtained. The fractional-dimensional theoretical results are shown to be in good agreement with previous, more detailed calculations based on second-order perturbation theory.
|
Keywords
fractional-dimensional approach
effective length of quantum confinement
polaron effect
GaAs film
|
Corresponding Author(s):
Qiang Tian
|
Issue Date: 17 August 2015
|
|
1 |
L. Wendler and R. Haupt, Electron-phonon interaction in semiconductor superlattices, Phys. Status Solidi B 143(2), 487 (1987)
https://doi.org/10.1002/pssb.2221430211
|
2 |
N. Mori and T. Ando, Electron optical-phonon interaction in single and double heterostructures, Phys. Rev. B 40(9), 6175 (1989)
https://doi.org/10.1103/PhysRevB.40.6175
|
3 |
X. X. Lang, The interaction of interface optical phonons with an electron in an asymmetric quantum well, J. Phys.: Condens. Matter 4(49), 9769 (1992)
https://doi.org/10.1088/0953-8984/4/49/005
|
4 |
F. H. Stillinger, Axiomatic basis for spaces with non integer dimension, J. Math. Phys. 18(6), 1224 (1977)
https://doi.org/10.1063/1.523395
|
5 |
X. F. He, Excitons in anisotropic solids: The model of fractional dimensional space, Phys. Rev. B 43(3), 2063 (1991)
https://doi.org/10.1103/PhysRevB.43.2063
|
6 |
H. Mathieu, P. Lefebvre, and P. Christol, Simple analytical method for calculating exciton binding energies in semiconductor quantum wells, Phys. Rev. B 46(7), 4092 (1992)
https://doi.org/10.1103/PhysRevB.46.4092
|
7 |
P. Lefebvre, P. Christol, and H. Mathieu, Excitons in semiconductor superlattices: Heuristic description of the transfer between Wannier-like and Frenkel-like regimes, Phys. Rev. B 46(20), 13603 (1992)
https://doi.org/10.1103/PhysRevB.46.13603
|
8 |
P. Christol, P. Lefebvre, and H. Mathieu, Fractionaldimensional calculation of exciton binding energies in semiconductor quantum wells and quantum-well wires, J. Appl. Phys. 74(9), 5626 (1993)
https://doi.org/10.1063/1.354224
|
9 |
P. Lefebvre, P. Christol, H. Mathieu, and S. Glutsch, Confined excitons in semiconductors: Correlation between binding energy and spectral absorption shape, Phys. Rev. B 52(8), 5756 (1995)
https://doi.org/10.1103/PhysRevB.52.5756
|
10 |
M. Dios-Leyva, A. Bruno Alfonso, A. Matos-Abiague, and L. E. Oliveira, Excitonic and shallow-donor states in semiconducting quantum wells: A fractional dimensional space approach, J. Phys.: Condens. Matter 9(40), 8477 (1997)
https://doi.org/10.1088/0953-8984/9/40/014
|
11 |
A. Matos-Abiague, L. E. Oliveira, and M. de Dios-Leyva, Fractional-dimensional approach for excitons in GaAs- Ga1-xAlxAs quantum wells, Phys. Rev. B 58(7), 4072 (1998)
https://doi.org/10.1103/PhysRevB.58.4072
|
12 |
Z. P. Wang and X. X. Liang, Electron-phonon effects on Stark shifts of excitons in parabolic quantum wells: Fractional-dimension variational approach, Phys. Lett. A 373(30), 2596 (2009)
https://doi.org/10.1016/j.physleta.2009.05.017
|
13 |
A. Matos-Abiague, A fractional-dimensional space approach to the polaron effect in quantum wells, J. Phys.: Condens. Matter 14(17), 4543 (2002)
https://doi.org/10.1088/0953-8984/14/17/325
|
14 |
A. Matos-Abiague, Fractional-dimensional space approach for parabolic-confined polarons, Semicond. Sci. Technol. 17(2), 150 (2002)
https://doi.org/10.1088/0268-1242/17/2/311
|
15 |
A. Matos-Abiague, Polaron effect in GaAs-Ga1-xAlx As quantum wells: A fractional-dimensional space approach, Phys. Rev. B 65, 165321 (2002)
https://doi.org/10.1103/PhysRevB.65.165321
|
16 |
R. L. R. Suárez and A. Matos-Abiague, Fractionaldimensional polaron corrections in asymmetric GaAs-Ga1-xAlx As quantum wells, Physica E 18(4), 485 (2003)
https://doi.org/10.1016/S1386-9477(03)00228-5
|
17 |
A. Thilagam and A. Matos-Abiague, Excitonic polarons in confined systems, J. Phys.: Condens. Matter 16(23), 3981 (2004)
https://doi.org/10.1088/0953-8984/16/23/016
|
18 |
E. R. Gómez, L. E. Oliveira, and M. de Dios Leyva, Shallow impurities in semiconductor superlattices: A fractionaldimensional space approach, J. Appl. Phys. 85(8), 4045 (1999)
https://doi.org/10.1063/1.370309
|
19 |
I. D. Mikhailov, F. J. Betancur, R. A. Escorcia, and J. Sierra-Ortega, Shallow donors in semiconductor heterostructures: Fractal dimension approach and the variational principle, Phys. Rev. B 67(11), 115317 (2003)
https://doi.org/10.1103/PhysRevB.67.115317
|
20 |
J. Kundrotas, A. Cer?kus, S. A?montas, Steponas Asmontas, G. Valusis, B. Sherlikerl and M. P. Harrison, Excitonic and impurity-related optical transitions in Be delta-doped GaAs/AlAs multiple quantum wells: Fractional-dimensional space approach. Phys. Rev. B 72(23), 235322 (2005)
https://doi.org/10.1103/PhysRevB.72.235322
|
21 |
J. Kundrotas, A. Cer?kus, S. A?montas, G. Valu?is, M. P. Halsall, E. Johannessen, and P. Harrison, Impurity-induced Huang–Rhys factor in beryllium δ-doped GaAs/AlAs multiple quantum wells: Fractional-dimensional space approach, Semicond. Sci. Technol. 22(9), 1070 (2007)
https://doi.org/10.1088/0268-1242/22/9/016
|
22 |
Z. H. Wu, H. Li, L. Yan, B. Liu, and Q. Tian, The polaron in a GaAs film deposited on AlxGa1-x As influenced by the thickness of the substrate, Superlattices Microstruct. 55, 16 (2013)
https://doi.org/10.1016/j.spmi.2012.11.026
|
23 |
Z. H. Wu, H. Li, L. Yan, B. Liu, and Q. Tian, Polaron effect in a GaAs film: The fraction-dimensional space approach, Acta Phys. Sin. 62, 097302 (2013) (in Chinese)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|