Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    0, Vol. Issue () : 101203    https://doi.org/10.1007/s11467-015-0476-y
REVIEW ARTICLE
“Could charm (& τ ) transitions be the ‘poor princess’ providing a deeper understanding of fundamental dynamics ?” or: “Finding novel forces”
Ikaros I. Bigi()
Department of Physics, University of Notre Dame du Lac, Notre Dame, IN 46556, USA
 Download: PDF(709 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We know that our Universe is composed of only ~4.5% “known” matter; therefore, our understanding is incomplete. This can be seen directly in the case of neutrino oscillations (without even considering potential other universes). Charm quarks have had considerable impact on our understanding of known matter, and quantum chromodynamics (QCD) is the only local quantum field theory to describe strong forces. It is possible to learn novel lessons concerning strong dynamics by measuring rates around the thresholds of [QˉQ] states with Q = b, c. Furthermore, these states provide us with gateways towards new dynamics (ND), where we must transition from “accuracy” to “precision” eras. Finally, we can make connections with τ transitions and, perhaps, with dark matter. Charm dynamics acts as a bridge between the worlds of light- and heavy-flavor hadrons (namely, beauty hadrons), and finding regional asymmetries in many-body final states may prove to be a “game changer”. There are several different approaches to achieving these goals: for example, experiments such as the Super Tau-Charm Factory, Super Beauty Factory, and the Super Z0 Factory act as gatekeepers – and deeper thinking regarding symmetries.

Keywords CKM matrix      HQE &      OPE      CPV in ΔC ≠ 0 ΔB &      τ decays     
Corresponding Author(s): Ikaros I. Bigi   
Just Accepted Date: 14 April 2015   Issue Date: 11 June 2015
 Cite this article:   
Ikaros I. Bigi. “Could charm (& τ ) transitions be the ‘poor princess’ providing a deeper understanding of fundamental dynamics ?” or: “Finding novel forces”[J]. Front. Phys. , 0, (): 101203.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-015-0476-y
https://academic.hep.com.cn/fop/EN/Y0/V/I/101203
1 J. Bjorken and S. Glashow, Elementary particles and SU(4), Phys. Lett. 11(3), 255(1964)
https://doi.org/10.1016/0031-9163(64)90433-0
2 Y. Hara, Unitary triplets and the eightfold way, Phys. Rev. 134(3B), B701(1964)
https://doi.org/10.1103/PhysRev.134.B701
3 Z. Maki and Y. Ohnuki, Quartet scheme for elementary particles, Prog. Theor. Phys. 32(1), 144(1964)
https://doi.org/10.1143/PTP.32.144
4 S. L. Glashow, J. Illiopolous, and L. Maiani, Weak interactions with lepton–hadron symmetry, Phys. Rev. D 2(7), 1285(1970)
https://doi.org/10.1103/PhysRevD.2.1285
5 K. Niu, E. Mikumo, and Y. Maeda, A possible decay in flight of a new type particle, Prog. Theor. Phys. 46(5), 1644(1971)
https://doi.org/10.1143/PTP.46.1644
6 L. B. Okun, Weak Interactions of Elementary Particles, Pergamon, 1965. The Russian original had appeared in 1963- i.e., clearly before the discovery of CP violation.
7 A. C. Benvenuti, D. Cline, W. T. Ford, R. Imlay, T. Y. Ling, A. K. Mann, F. Messing, R. Orr, D. D. Reeder, C. Rubbia, R. Stefanski, L. Sulak, and P. Wanderer, Observation of new-particle production by high-energy neutrinos and antineutrinos, Phys. Rev. Lett. 34(7), 419(1975)
https://doi.org/10.1103/PhysRevLett.34.419
8 M. K. Gaillard and B. Lee, Rare decay modes of the K mesons in gauge theories, Phys. Rev. D 10(3), 897(1974)
https://doi.org/10.1103/PhysRevD.10.897
9 M. K. Gaillard, B. Lee, and J. Rosner, Search for charm, Rev. Mod. Phys. 47(2), 277(1975)
https://doi.org/10.1103/RevModPhys.47.277
10 T. Appelquist and H. D. Politzer, Heavy quarks and e+e- annihilation, Phys. Rev. Lett. 34(1), 43(1975)
https://doi.org/10.1103/PhysRevLett.34.43
11 I. I. Bigi, Y. Dokshitzer, V. Khoze, J. Kühn, and P. Zerwas, Production and decay properties of ultra-heavy quarks, Phys. Lett. B 181(1-2), 157 (1986)
https://doi.org/10.1016/0370-2693(86)91275-X
12 Charm Physics, edited by Ming-Han Ye and Tao Huang, CCAST (World Lab.), Symposion/Workshop Proceedings, Vol. 2, Gordon & Breach Science Publishers
13 L. Wolfenstein, Violation of CP invariance and the possibility of very weak interactions, Phys. Rev. Lett. 13(18), 562(1964)
https://doi.org/10.1103/PhysRevLett.13.562
14 M. Kobayashi and T. Maskawa, CP-violation in the renormalizable theory of weak interaction, Prog. Theor. Phys. 49(2), 652(1973)
https://doi.org/10.1143/PTP.49.652
15 S. Bianco, F. L. Fabbri, D. Benson, and I. Bigi, A Cicerone for the physics of charm, Riv. Nuovo Cim. 26N7, 1 (2003), arXiv: hep-ex/0309021
16 M. B. Voloshin and M. A. Shifman, Lifetime hierarchy of charm and beautiful hadrons, Zh.éksp. Teor. Fiz. 91, 1180 (1986) [Sov. Phys. JETP 64, 698 (1986)]
17 A. Paul, I. I. Bigi, and S. Recksiegel, D0 → γγ and D0 → μ+μ- rates on an unlikely impact of the littlest Higgs model with T parity, Phys. Rev. D 82(9), 094006(2010), arXiv: 1008.3141
https://doi.org/10.1103/PhysRevD.82.094006
18 A. Paul, I. I. Bigi, and S. Recksiegel, On D →Xul+l- within the Standard Model and frameworks like the littlest Higgs model with T parity, Phys. Rev. D 83(11), 114006(2011), arXiv: 1101.6053
https://doi.org/10.1103/PhysRevD.83.114006
19 A. Paul, A. de la Puente, and I. I. Bigi, Manifestations of warped extra dimension in rare charm decays and asymmetries, Phys. Rev. D 90(1), 0140035(2014)
https://doi.org/10.1103/PhysRevD.90.014035
20 R. Aaij, [LHCb Collaboration], Measurement of CP violation in the phase space of B± →K±π+π- and B± →K± K+K- decays, Phys. Rev. Lett. 111, 101801 (2013), arXiv: 1306.1246
https://doi.org/10.1103/PhysRevLett.111.101801
21 R. Aaij, [LHCb Collaboration], Measurement of CP violation in the phase space of B± →K+K-π± and B± → π+π-π± decays, Phys. Rev. Lett. 112(11), 011801(2014)
https://doi.org/10.1103/PhysRevLett.112.011801
22 L. Wolfenstein, Parametrization of the Kobayashi–Maskawa matrix, Phys. Rev. Lett. 51(21), 1945(1983)
https://doi.org/10.1103/PhysRevLett.51.1945
23 K. A. Olive, . [Particle Data Group], Review of particle physics, Chinese Physics C 38(9), 090001(2014)
https://doi.org/10.1088/1674-1137/38/9/090001
24 Y. H. Ahn, H. Y. Cheng, and S. Oh, Wolfenstein parametrization at higher order: Seeming discrepancies and their resolution, Phys. Lett. B 703(5), 571(2011)
https://doi.org/10.1016/j.physletb.2011.08.047
25 I. I. Bigi, 3- and 4-body final states in B, D and tau decays about features of new dynamics with CPT invariance or “Achaeans outside Troy”, arXiv: 1306.6014 [hep-ph], talk given at FPCP 2013
26 S. L. Adler, Axial-vector vertex in spinor electrodynamics, Phys. Rev. 177(5), 2426(1969)
https://doi.org/10.1103/PhysRev.177.2426
27 J. S. Bell and R. Jackiw, A PCAC puzzle: π0 → γγ in the s-model, Nuovo Cim. 60(1), 47(1969)
https://doi.org/10.1007/BF02823296
28 W. A. Bardeen, Anomalous ward identities in spinor field theories, Phys. Rev. 184(5), 1848(1969)
https://doi.org/10.1103/PhysRev.184.1848
29 J. Steinberger, On the use of subtraction fields and the lifetimes of some types of meson decay, Phys. Rev. 76(8), 1180(1949)
https://doi.org/10.1103/PhysRev.76.1180
30 I. I. Bigi, M. Shifman, N. Uraltsev, and A. Vainshtein, High power n of mb in b-flavored widths and n = 5 → ∞ limit, Phys. Rev. D 56(7), 4017(1997)
https://doi.org/10.1103/PhysRevD.56.4017
31 M. A. Shifman, Quark–hadron duality, Boris Ioffe Festschrift At the Frontier of Particle Physics / Handbook of QCD, edited by M. Shifman, Singapore: World Scientific, 2001, arXiv: hep-ph/0009131
32 I. I. Bigi and N. G. Uraltsev, A vademecum on quark–hadron duality, Int. J. Mod. Phys. A 16(32), 5201(2001), arXiv: hep-ph/0106346
https://doi.org/10.1142/S0217751X01005535
33 I. I. Bigi and Th. Mannel, Parton-hadron duality in B meson decays, arXiv: hep-ph/0212021, 2002
34 I. I. Bigi, Probing CP asymmetries in charm baryons decays, arXiv: 1206.4554; it was meant to be part of a published paper in the future.
35 G. ’t Hooft, A two-dimensional model for mesons, Nucl. Phys. B 75(3), 461(1974)
https://doi.org/10.1016/0550-3213(74)90088-1
36 C. Callan, N. Coote, and D. Gross, Two-dimensional Yang- Mills theory: A model of quark confinement, Phys. Rev. D 13(6), 1649(1976)
https://doi.org/10.1103/PhysRevD.13.1649
37 M. Einhorn, S. Nussinov, and E. Rabinovici, Meson scattering in quantum chromodynamics in two dimensions, Phys. Rev. D 15(8), 2282(1977)
https://doi.org/10.1103/PhysRevD.15.2282
38 I. I. Bigi, in: Proceedings of Charm Physics, edited by Ming- Han Ye & Tao Huang, QCD161:S12:1987A, pp 339-425 (in particular pp 370-389); SLAC-PUB-4349
39 I. I. Bigi, V. A. Khoze, N. G. Uraltsev, and A. I. Sanda, The question of CP noninvariance – As seen through the eyes of neutral beauty, in: CP Violation, edited by C. Jarlskog, World Scientific, 1988, pp 175-248
40 L. Wolfenstein, Final-state interactions and CP violation in weak decays, Phys. Rev. D 43(1), 151 (1991)
https://doi.org/10.1103/PhysRevD.43.151
41 I. I. Bigi and A. I. Sanda, “CP Violation”, 2nd Ed., Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology, Cambridge University Press, 2009
https://doi.org/10.1017/CBO9780511581014
42 H. J. Lipkin, Lie Groups for Pedestrians, North-Holland Publ. Co., 1965
43 M. R. Pennington, Translating quark dynamics into hadron physics (and back again), arXiv: hep-ph/0207220, in: Proceedings of MESON2002
44 J. R. Peláez, M. R. Pennington, J. Ruiz de Elvira, and D. J. Wilson, The nature of the lightest scalar meson, its Nc behaviour and semi-local duality, arXiv:1109.2392, in: Proceedings of the Hadron 2011
45 J. R. Pelaez, Recent progress on light scalars: from confusion to precision using dispersion theory, arXiv: 1301.4431 [hep-ph]
46 H. J. Lipkin, Is observed direct CP violation in Bd→K+π-Bd→K+π- due to new physics? Check standard model prediction of equal violation in Bs→K-π+, Phys. Lett. B 621(1-2), 126 (2005)
https://doi.org/10.1016/j.physletb.2005.06.023
47 K. Wilson, Non-Lagrangian models of current algebra, Phys. Rev. 179(5), 1499(1969)
https://doi.org/10.1103/PhysRev.179.1499
48 I. I. Bigi, N. G. Uraltsev, and A. I. Vainshtein, Nonperturbative corrections to inclusive beauty and charm decays: QCD versus phenomenological models, Phys. Lett. B 293(3-4), 430 (1992); Erratum, Phys. Lett. B 297(3-4), 477 (1993)
https://doi.org/10.1016/0370-2693(92)90908-M
49 I. I. Bigi, M. Shifman, N. G. Uraltsev, and A. I. Vainshtein, QCD predictions for lepton spectra in inclusive heavy flavor decays, Phys. Rev. Lett. 71(4), 496(1993)
50 I. I. Bigi, M. Shifman, N. G. Uraltsev, and A. I. Vainshtein, Pole mass of the heavy quark: Perturbation theory and beyond, Phys. Rev. D 50(3), 2234(1994)
https://doi.org/10.1103/PhysRevLett.71.496
51 M. Voloshin, “Optical” sum rule for form factors of heavy mesons, Phys. Rev. D 46(7), 3062(1992)
https://doi.org/10.1103/PhysRevD.50.2234
52 M. Beneke and V. Braun, Heavy quark effective theory beyond perturbation theory: Renormalons, the pole mass and the residual mass term, Nucl. Phys. B 426(2), 301(1994)
https://doi.org/10.1103/PhysRevD.46.3062
53 N. Uraltsev, Do higher order perturbative corrections in b → c semileptonic transitions, Int. J. Mod. Phys. A 11, 515 (1996)
https://doi.org/10.1016/0550-3213(94)90314-X
54 M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, QCD and resonance physics: Theoretical foundation, Nucl. Phys. B 147(1979) 385; 448
https://doi.org/10.1142/S0217751X96000237
55 I. I. Balitsky, V. M. Braun, and A. V. Kolesnichenko, Radiative decay Σ+ → ργ in quantum chromodynamics, Nucl. Phys. B 312(3), 509(1989)
https://doi.org/10.1016/0550-3213(79)90022-1
56 V. I. Chernyak and I. R. Zhitnitsky, B-meson exclusive decays into baryons, Nucl. Phys. B 345(1), 137(1990)
https://doi.org/10.1016/0550-3213(89)90570-1
57 I. Bigi, M. Shifman, N. G. Uraltsev, and A. Vainshtein, Sum rules for heavy flavor transitions in the small velocity limit, Phys. Rev. D 52(1), 196(1995)
https://doi.org/10.1016/0550-3213(90)90612-H
58 N. Uraltsev, New exact heavy quark sum rules, Phys. Lett. B 501(1-2), 86 (2001)
https://doi.org/10.1103/PhysRevD.52.196
59 S. Turczyk, Contribution to Memorial Book for Kolya Uraltsev to be published in 2015
60 Chr. Hanhart, Modelling low-mass resonances in multi-body decays, arXiv: 1311.6627, in: Proceedings of CHARM 2013
61 B. Kubis, The role of final-state interactions in Dalitz plot studies, arXiv: 1108.5866 (2011)
62 S. Gardner and U. G. Meisner, Rescattering and chiral dynamics in B → ρπ decay, Phys. Rev. D 65(9), 094004(2002), arXiv: hep-ph/0112281
63 J. Donoghue, Dispersion relations and effective field theory, arXiv: hep-ph/9607351, lecture given at the International School on Effective Field Theory, Almunecar, Spain, <month>June</month>1995
https://doi.org/10.1103/PhysRevD.65.094004
64 C. Di Donato, G. Ricciardi, and I. I. Bigi, η-η’ mixing: From electromagnetic transitions to weak decays of charm and beauty hadrons, Phys. Rev. D 85(1), 013016(2012), arXiv: 1105.3557
65 S. Fajfer, P. Singer, and J. Zupan, Rare decay D0 → γγ, Phys. Rev. D 64(7), 074008(2001)
https://doi.org/10.1103/PhysRevD.85.013016
66 G. Burdman, E. Golowich, J. A. Hewett, and S. Pakvasa, Rare charm decays in the standard model and beyond, Phys. Rev. D 66(1), 014009(2002)
https://doi.org/10.1103/PhysRevD.64.074008
67 R. Peccei and H. Quinn, CP conservation in the presence of pseudoparticles, Phys. Rev. Lett. 38(25), 1440(1977)
https://doi.org/10.1103/PhysRevD.66.014009
68 R. Peccei and H. Quinn, Constraints imposed by CP conservation in the presence of pseudoparticles, Phys. Rev. D 16(6), 1791(1977)
https://doi.org/10.1103/PhysRevLett.38.1440
69 R. D. Peccei, The strong CP problem and axions, arXiv: hep-ph/0607268, 2006
https://doi.org/10.1103/PhysRevD.16.1791
70 C. Jarlskog (Ed.), CP Violation, World Scientific, 1994
71 G. Burdman, E. Golowich, J. A. L. Hewett, and S. Pakvasa, Radiative weak decays of charm mesons, Phys. Rev. D 52(11), 6383(1995)
72 S. Fajfer, Rare decays of D mesons, arXiv: hep-ph/0306263, 2003
https://doi.org/10.1103/PhysRevD.52.6383
73 A. Lenz, Contribution to Memorial Book for Kolya Uraltsev, to be published in 2015
74 M. Golden and B. Grinstein, Enhanced CP violations in hadronic charm decays, Phys. Lett. B 222(3-4), 501 (1989)
75 I. I. Bigi, Conf. Proc. C 890523, 169-195 (1989), in: Proceedings of Tau-Charm Factory Workshop
76 I. Bediaga, I. I. Bigi, J. Miranda, and A. C. dos Reis, CP asymmetries in three-body final states in charged D decays and CPT invariance, Phys. Rev. D 89(7), 074024(2014)
77 I. Bediaga, I. I. Bigi, A. Gomes, G. Guerrer, J. Miranda, and A. C. dos Reis, On a CP anisotropy measurement in the Dalitz plot, Phys. Rev. D 80(9), 096006(2009), arXiv: 0905.4233
https://doi.org/10.1103/PhysRevD.89.074024
78 I. Bediaga, J. Miranda, A. C. dos Reis, I. I. Bigi, A. Gomes, J. M. Otalora Goicochea, and A. Veiga, Second generation of “Miranda procedure” for CP violation in Dalitz studies of B (and D and t) decays, Phys. Rev. D 86(3), 036005(2012), arXiv: 1205.3036
https://doi.org/10.1103/PhysRevD.80.096006
79 M. Williams, Observing CP violation in many-body decays, Phys. Rev. D 84(5), 054015(2011), arXiv: 1105.5338
https://doi.org/10.1103/PhysRevD.86.036005
80 I. I. Bigi, Charm Physics- Like Botticelli in the Sistine Chapel, arXiv: hep-ph/0107102, in: Proceedings of KAON 2001, Pisa, 2001, pp 417-429
https://doi.org/10.1103/PhysRevD.84.054015
81 A. Datta and D. London, Triple-product correlations in B→V1V2 decays and new physics, Int. J. Mod. A 19(15), 2505(2004), arXiv: hep-ph/0303159
82 W. Bensalem, A. Datta, and D. London, New-physics effects on triple-product correlations in Lb decays, Phys. Rev. D 66(9), 094004(2002), arXiv: hep-ph/0208054
83 W. Bensalem, A. Datta, and D. London, T-violating tripleproduct correlations in charmless Lb decays, Phys. Lett. B 538(3-4), 309 (2002)
https://doi.org/10.1103/PhysRevD.66.094004
84 G. Valencia, Angular correlations in the decay B→VV and CP violation, Phys. Rev. D 39(11), 3339(1989)
https://doi.org/10.1016/S0370-2693(02)02028-2
85 J. M. Link, [FOCUS Collaboration], Search for T violation in charm meson decays, Phys. Lett. B 622(3-4), 239 (2005)
https://doi.org/10.1103/PhysRevD.39.3339
86 P. del Amo Sanchez, [BaBar Collaboration], Search for CP violation using T-odd correlations in D0 →K+K-π+π- decays, Phys. Rev. D 81, 111103 (2010), arXiv: 1003.3397
https://doi.org/10.1016/j.physletb.2005.07.024
87 R. Aaij, [LHCb Collaboration], Search for CP violation using T-odd correlations in D0 →K+K-π+π- decays, Journal of High Energy Physics 10, 005 (2014), arXiv: 1408.1299 [hep-ex]
https://doi.org/10.1103/PhysRevD.81.111103
88 I. I. Bigi, CP violation in τ decays at SuperB \& Super-Belle Experiments – like finding signs of dark matter, Nucl. Phys. B (Proc. Suppl.) 253-255, 91 (2014), arXiv: 1210.2968, talk given at Tau 2012 Workshop at Nagoya (Japan)
89 I. I. Bigi, Heavy flavour physics: On its more than 50 years of history, its future and the Rio Manifesto, arXiv: hepph/0012161, Summary talk given at HQ2K “Heavy Quarks at Fixed Target 2000”, Rio de Janeiro, Brazil, <month>Oct.</month><day>9</day>-<day>12</day>, 2000
90 I. I. Bigi, CP violation in the SM, quantum subtleties and the insights of Yogi Berra, Chinese Physics C 45(3), 283(2007), arXiv: hep-ph/0703132
91 L. M. Sehgal and M. Wanninger, CP violation in the decay KL → π+π-e+e-, Phys. Rev. D 46(3), 1035(1992); erratum, Phys. Rev. D 46, 5209 (1992)
92 L. M. Sehgal and J. van Leusen, Violation of time reversal invariance in the decays KL → π+π-γ and KL → π+π-e+e-, Phys. Rev. Lett. 83(24), 4933(1999)
https://doi.org/10.1103/PhysRevD.46.5209.3
93 L. M. Sehgal and J. van Leusen, Time evolution of decay spectrum in K0, Kˉ0 → π+π-e+e-, Phys. Lett. B 489, 300 (2000)
https://doi.org/10.1103/PhysRevLett.83.4933
94 M. Gronau, High order U-spin breaking: A precise amplitude relation in D0 decays, Phys. Lett. B 730, 221 (2014)
95 M. Gronau, Addendum to “High order U-spin breaking: A precise amplitude relation in D0 decays” [Phys. Lett. B 730, 221 (2014)], Phys. Lett. B 735, 282 (2014), arXiv: 1311.1434
https://doi.org/10.1016/j.physletb.2014.01.035
96 R. Aaij, [LHCb Collaboration], Search for CP violation in D0 → π-π+π0 decays with the energy test, Phys. Lett. B 740, 158 (2015), arXiv: 1410.4170v2 [hep-ex]
https://doi.org/10.1016/j.physletb.2014.06.055
97 A. J. Bevan and B. T. Meadows, Bounding hadronic uncertainties in c → u decays, Phys. Rev. D 90(9), 094028(2014), arXiv: 1310.0050
https://doi.org/10.1016/j.physletb.2014.11.043
98 A. Celis, V. Cirigliano, and E. Passemar, Modeldiscriminating power of lepton flavor violating t decays, Phys. Rev. D 89(9), 095014(2014)
https://doi.org/10.1103/PhysRevD.90.094028
99 E. Passemar, I. I. Bigi, Hai-Bo Li, and Cai-Dian Lu, Higgs factory as excellent “early” Z0 factory about beauty, charm hadrons & τ dynamics (in progress)
https://doi.org/10.1103/PhysRevD.89.095014
100 I. I. Bigi and A. I. Sanda, A “known” CP asymmetry in t decays, Phys. Lett. B 625(1-2), 47 (2005)
101 I. I. Bigi, CP violation in t decays at SuperB & Belle II Experiments – like finding signs of dark matter, Nucl. Phys. B Proc. Suppl. 253-255, 91 (2014)
https://doi.org/10.1016/j.physletb.2005.08.033
102 R. J. Sobie, Search for CP violation in the decay τ- → π-KS0(≥0π0)υτ at BaBar, Nucl. Phys. B Proc. Suppl. 253-255, 99 (2014)
https://doi.org/10.1016/j.nuclphysbps.2014.09.022
103 W. Dekens, J. de Vries, J. Bsaisou, W. Bernreuther, C. Hanhart, Ulf-G. Meisner, A. Nogga, and A. Wirzba, Unraveling models of CP violation through electric dipole moments of light nuclei, Journal of High Energy Physics 07, 069 (2014), arXiv: 1404.6082 [hep-ph]
104 W. Bernreuther, O. Nachtmann, and P. Overmann, CP- violating electric and weak dipole moments of the t lepton from threshold to 500 GeV, Phys. Rev. D 48(1), 78(1993)
105 A. Pich, Precision Tau physics, Prog. Part. Nucl. Phys. 75, 41 (2014)
https://doi.org/10.1103/PhysRevD.48.78
106 M. Fael, L. Mercolli, and E. Passera, Towards a determination of the tau lepton dipole moments, Nucl. Phys. B Proc. Suppl. 253-255, 103 (2014)
https://doi.org/10.1016/j.ppnp.2013.11.002
107 http://www.slac.stanford.edu/xorg/hfag/, Y. Amhis, [Heavy Flavor Averaging Group Collaboration], Averages of b-hadron, c-hadron, and tau-lepton properties as of early 2012, arXiv: 1207.1158 [hep-ex]
https://doi.org/10.1016/j.nuclphysbps.2014.09.025
108 K. Inami, [Belle Collaboration], Search for the electric dipole moment of the t lepton, Phys. Lett. B 551(1-2), 16 (2003), arXiv: hep-ex/0210066
109 A. Heister, [ALEPH Collaboration], Search for anomalous weak dipole moments of the tau lepton, Eur. Phys. J. C 30(3), 291(2003), arXiv: hep-ex/0209066
https://doi.org/10.1016/S0370-2693(02)02984-2
110 I. I. Bigi, Matter–antimatter oscillations and CP violation as manifested through quantum mysteries, Rep. Prog. Phys. 70(11), 1869(2007)
https://doi.org/10.1140/epjc/s2003-01286-1
111 I. I. Bigi, Flavour dynamics and CP violation in the SM: A tale in five parts of great succe<?Pub Caret?>sses, little understanding and promise for the future, Riv. Nuovo Cim. 30, 1 (2007), arViv: hep-ph/0601167
https://doi.org/10.1088/0034-4885/70/11/R03
[1] Yi Wang, Shenshen Yan, Xi Wu, Jie Ren. Fast evaluating phonon life time and thermal conductivity determined by Grüneisen parameter and phase space size of three-phonon scattering[J]. Front. Phys. , 2025, 20(1): 14212-.
[2] Hui Ding, Xiao-Hong Li, Rui-Zhou Zhang, Hong-Ling Cui. Strain-tunable electronic properties and quantum capacitance of ScHfCO2 MXene as supercapacitor electrodes[J]. Front. Phys. , 2025, 20(1): 14211-.
[3] Yu Guo, Yang Zhao, Qiao Ling, Si Zhou, Jijun Zhao. Strong ferroelectricity in one-dimensional materials self-assembled by superatomic metal halide clusters[J]. Front. Phys. , 2024, 19(6): 63210-.
[4] Julienne Impundu, Wenxiang Wang, Zheng Wei, Yushi Xu, Yu Wang, Jiawang You, Wenbin Huang, Yong Jun Li, Lianfeng Sun. Temperature dependence of positive and negative magnetoresistances of tantalum-covered multiwalled carbon nanotubes[J]. Front. Phys. , 2024, 19(6): 63208-.
[5] Yi-Neng Zhou, Tian-Gang Zhou, Pengfei Zhang. General properties of the spectral form factor in open quantum systems[J]. Front. Phys. , 2024, 19(3): 31202-.
[6] Xiulian Fan, Ruifeng Xin, Li Li, Bo Zhang, Cheng Li, Xilong Zhou, Huanzhi Chen, Hongyan Zhang, Fangping OuYang, Yu Zhou. Progress in the preparation and physical properties of two-dimensional Cr-based chalcogenide materials and heterojunctions[J]. Front. Phys. , 2024, 19(2): 23401-.
[7] Cheuk-Yin Wong. On the question of quark confinement in the Abelian U(1) QED gauge interaction[J]. Front. Phys. , 2023, 18(6): 64401-.
[8] Ling-Yu Yao, Li-Juan Li, Xue-Ke Song, Liu Ye, Dong Wang. Manipulating the measured uncertainty under Lee−Yang dephasing channels through local PT-symmetric operations[J]. Front. Phys. , 2023, 18(5): 51302-.
[9] Shuang-Shuang Kong, Wei-Kai Liu, Xiao-Xia Yu, Ya-Lin Li, Liu-Zhu Yang, Yun Ma, Xiao-Yong Fang. Interlayer interaction mechanism and its regulation on optical properties of bilayer SiCNSs[J]. Front. Phys. , 2023, 18(4): 43302-.
[10] Zhiqiang Yang, Yichuan Chen, Jing Li, Chen Lu, Junfang Zhao, Mengtao Sun. Theoretical investigation on optical properties of Möbius carbon nanobelts in one- and two-photon absorption[J]. Front. Phys. , 2023, 18(3): 33303-.
[11] Qiugang Liao, Hao Liu, Ziqiang Chen, Yinggan Zhang, Rui Xiong, Zhou Cui, Cuilian Wen, Baisheng Sa. Flexible and ultrathin dopamine modified MXene and cellulose nanofiber composite films with alternating multilayer structure for superior electromagnetic interference shielding performance[J]. Front. Phys. , 2023, 18(3): 33300-.
[12] Junchao Hu, Xinglin Wen, Dehui Li. Optical properties of two-dimensional perovskites[J]. Front. Phys. , 2023, 18(3): 33602-.
[13] Gefei Niu, Jianchen Lu, Jianqun Geng, Shicheng Li, Hui Zhang, Wei Xiong, Zilin Ruan, Yong Zhang, Boyu Fu, Lei Gao, Jinming Cai. Electronic properties of monolayer copper selenide with one-dimensional moiré patterns[J]. Front. Phys. , 2023, 18(1): 13303-.
[14] Weibin Zhang, Woochul Yang, Yingkai Liu, Zhiyong Liu, Fuchun Zhang. Computational exploration and screening of novel Janus MA2Z4 (M = Sc−Zn, Y−Ag, Hf−Au; A=Si, Ge; Z=N, P) monolayers and potential application as a photocatalyst[J]. Front. Phys. , 2022, 17(6): 63509-.
[15] Jia-Qi Liu, Qian Gao, Zhen-Peng Hu. HSH-carbon: A novel sp2−sp3 carbon allotrope with an ultrawide energy gap[J]. Front. Phys. , 2022, 17(6): 63505-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed