Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2016, Vol. 11 Issue (1) : 111301    https://doi.org/10.1007/s11467-015-0482-0
REVIEW ARTICLE
Parity violation in electron scattering
P. Souder1,*(),K. D. Paschke
1. Syracuse University, Syracuse, NY 13244, USA
2. University of Virginia, Charlottesville, VA 22904, USA
 Download: PDF(1053 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

By comparing the cross sections for left- and right-handed electrons scattered from various unpolarized nuclear targets, the small parity-violating asymmetry can be measured. These asymmetry data probe a wide variety of important topics, including searches for new fundamental interactions and important features of nuclear structure that cannot be studied with other probes. A special feature of these experiments is that the results are interpreted with remarkably few theoretical uncertainties, which justifies pushing the experiments to the highest possible precision. To measure the small asymmetries accurately, a number of novel experimental techniques have been developed.

Keywords weak neutral currents      weak form factors      parton distributions      neutron stars      physics beyond the standard model     
Fund: 
Corresponding Author(s): P. Souder   
Online First Date: 27 November 2015    Issue Date: 01 February 2016
 Cite this article:   
P. Souder,K. D. Paschke. Parity violation in electron scattering[J]. Front. Phys. , 2016, 11(1): 111301.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-015-0482-0
https://academic.hep.com.cn/fop/EN/Y2016/V11/I1/111301
1 T. Donnelly and J. Walecka, Electron scattering and nuclear structure, Annu. Rev. Nucl. Part. Sci. 25(1), 329 (1975)
https://doi.org/10.1146/annurev.ns.25.120175.001553
2 E. D. Bloom, D. Coward, H. DeStaebler, J. Drees, G. Miller, L. W. Mo, R. E. Taylor, M.Breidenbach, J. I. Friedman, G. C. Hartmann, and H. W. Kendall, High-energy inelastic e-p scattering at 6° and 10°, Phys. Rev. Lett. 23(16), 930 (1969)
https://doi.org/10.1103/PhysRevLett.23.930
3 M. Breidenbach, J. I. Friedman, H. W. Kendall, E. D. Bloom, D. H. Coward, H. DeStaebler, J. Drees, L. W. Mo, and R. E. Taylor, Observed behavior of highly inelastic electron–proton scattering, Phys. Rev. Lett. 23(16), 935 (1969)
https://doi.org/10.1103/PhysRevLett.23.935
4 K. Kumar, S. Mantry, W. Marciano, and P. Souder, Lowenergy measurements of the weak mixing angle, Annu. Rev. Nucl. Part. Sci. 63(1), 237 (2013)
https://doi.org/10.1146/annurev-nucl-102212-170556
5 M. J. Ramsey-Musolf, Low-energy parity-violation and new physics, Phys. Rev. C 60(1), 015501 (1999)
https://doi.org/10.1103/PhysRevC.60.015501
6 J. Erler, C. J. Horowitz, S. Mantry, and P. A. Souder, Weak polarized electron scattering, Annu. Rev. Nucl. Part. Sci. 64(1), 269 (2014)
https://doi.org/10.1146/annurev-nucl-102313-025520
7 C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson, Experimental test of parity conservation in beta decay, Phys. Rev. 105(4), 1413 (1957)
https://doi.org/10.1103/PhysRev.105.1413
8 C. Y. Prescott, et al. (SLAC-E122 Collaboration), Parity non-conservation in inelastic electron scattering, Phys. Lett. B 77, 347 (1978)
https://doi.org/10.1016/0370-2693(78)90722-0
9 C. Y. Prescott, et al. (SLAC-E122 Collaboration), Further measurements of parity non-conservation in inelastic electron scattering, Phys. Lett. B 84, 524 (1979)
https://doi.org/10.1016/0370-2693(79)91253-X
10 W. Heil, J. Ahrens, H. G. Andresen, A. Bornheimer, D. Conrath, K. J. Dietz, W. Gasteyer, H. J. Gessinger, W. Hartmann, J. Jethwa, H. J. Kluge, H. Kessler, T. Kettner, L. Koch, F. Neugebauer, R. Neuhausen, E. W. Otten, E. Reichert, F. P. Schäfer, and B. Wagner, Improved limits on the weak, neutral, hadronic axial vector coupling constants from quasielastic scattering of polarized electrons, Nucl. Phys. B 327(1), 1 (1989)
https://doi.org/10.1016/0550-3213(89)90284-8
11 P. A. Souder, R. Holmes, D. Kim, K. S. Kumar, M. E. Schulze, K. Isakovich, G. W. Dodson, K. W. Dow, M. Farkhondeh, S. Kowalski, M. S. Lubell, J. Bellanca, M. Goodman, S. Patch, R. Wilson, G. D. Cates, S. Dhawan, T. J. Gay, V. W. Hughes, A. Magnon, R. Michaels, and H. R. Schaefer, Measurement of parity violation in the elastic scattering of polarized electrons from 12C, Phys. Rev. Lett. 65(6), 694 (1990)
https://doi.org/10.1103/PhysRevLett.65.694
12 J. Ashman, et al. (The European Muon Collaboration), A measurement of the spin asymmetry and determination of the structure function g1 in deep inelastic muon-proton scattering, Phys. Lett. B 206, 364 (1988)
https://doi.org/10.1016/0370-2693(88)91523-7
13 J. Ashman, et al. (The European Muon Collaboration), An investigation of the spin structure of the proton in deep inelastic scattering of polarised muons on polarised protons, Nucl. Phys. B 328, 1 (1989)
https://doi.org/10.1016/0550-3213(89)90089-8
14 D. B. Kaplan and A. Manohar, Strange matrix elements in the proton from neutral-current experiments, Nucl. Phys. B 310(3–4), 527 (1988)
https://doi.org/10.1016/0550-3213(88)90090-9
15 R. McKeown, Sensitivity of polarized elastic electron-proton scattering to the anomalous baryon number magnetic moment, Phys. Lett. B 219(2–3), 140 (1989)
https://doi.org/10.1016/0370-2693(89)90364-X
16 D. T. Spayde, et al. (SAMPLE Collaboration), Parity violation in elastic electron–proton scattering and the proton’s strange magnetic form factor, Phys. Rev. Lett. 84, 1106 (2000)
https://doi.org/10.1103/PhysRevLett.84.1106
17 T. Ito, et al. (SAMPLE Collaboration), Parity-violating electron deuteron scattering and the proton’s neutral weak axial vector form factor, Phys. Rev. Lett. 92, 102003 (2004)
https://doi.org/10.1103/PhysRevLett.92.102003
18 D. T. Spayde, et al. (SAMPLE Collaboration), The strange quark contribution to the proton’s magnetic moment, Phys. Lett. B 583, 79 (2004)
https://doi.org/10.1016/j.physletb.2004.01.002
19 K. A. Aniol, et al. (HAPPEX Collaboration), Parityviolating electroweak asymmetry in epscattering, Phys. Rev. C 69, 065501 (2004)
https://doi.org/10.1103/PhysRevC.69.065501
20 A. Acha, et al. (HAPPEX Collaboration), Precision measurements of nucleon strange form factors at Q2 ∼ 0.1 GeV2, Phys. Rev. Lett. 98, 032301 (2007)
https://doi.org/10.1103/PhysRevLett.98.032301
21 Z. Ahmed, et al. (HAPPEX Collaboration), New precision limit on the strange vector form factors of the proton, Phys. Rev. Lett. 108, 102001 (2012)
https://doi.org/10.1103/PhysRevLett.108.102001
22 D. S. Armstrong, et al. (G0 Collaboration), Strange-quark contributions to parity-violating asymmetries in the forward G0 electron-proton scattering experiment, Phys. Rev. Lett. 95, 092001 (2005)
https://doi.org/10.1103/PhysRevLett.95.092001
23 D. Androic, et al. (G0 Collaboration), Strange quark contributions to parity-violating asymmetries in the backward angle G0 electron scattering experiment, Phys. Rev. Lett. 104, 012001 (2010)
https://doi.org/10.1103/PhysRevLett.104.012001
24 F. Maas, et al. (A4 Collaboration), Measurement of strange-quark contributions to the nucleon’s form factors at Q2=0.230 (GeV/c)2, Phys. Rev. Lett. 93, 022002 (2004)
https://doi.org/10.1103/PhysRevLett.93.022002
25 F. E. Maas, K. Aulenbacher, S. Baunack, L. Capozza, J. Diefenbach, B. Gläser, T. Hammel, D. von Harrach, Y. Imai, E. M. Kabuss, R. Kothe, J. H. Lee, A. Lorente, E. Schilling, D. Schwaab, M. Sikora, G. Stephan, G. Weber, C. Weinrich, I. Altarev, J. Arvieux, M. El-Yakoubi, R. Frascaria, R. Kunne, M. Morlet, S. Ong, J. van de Wiele, S. Kowalski, B. Plaster, R. Suleiman, and S. Taylor, Evidence for strange-quark contributions to the nucleon’s form factors at Q2=0.108 (GeV/c)2, Phys. Rev. Lett. 94(15), 152001 (2005)
https://doi.org/10.1103/PhysRevLett.94.152001
26 S. Baunack, et al. (A4 Collaboration), Measurement of strange quark contributions to the vector form factors of the proton at Q2= 0.22 (GeV/c)2, Phys. Rev. Lett. 102(15), 151803 (2009)
https://doi.org/10.1103/PhysRevLett.102.151803
27 P. L. Anthony, et al. (SLAC E158 Collaboration), Precision measurement of the weak mixing angle in Møller scattering, Phys. Rev. Lett. 95, 081601 (2005)
https://doi.org/10.1103/PhysRevLett.95.081601
28 T. Allison, et al. (Qweak Collaboration), The Qweakexperimental apparatus, Nucl. Instrum. Methods A 781, 105 (2015)
https://doi.org/10.1016/j.nima.2015.01.023
29 S. Abrahamyan, et al. (PREX Collaboration), Measurement of the neutron radius of 208Pb through parity violation in electron scattering, Phys. Rev. Lett. 108, 112502 (2012)
https://doi.org/10.1103/PhysRevLett.108.112502
30 D. Becker, et al. (P2 Collaboration), P2- The weak charge of the proton, PoS Bormio 2013: 024 (2013)
31 J. Benesch, et al. (MOLLER Collaboration), The MOLLER experiment: An ultra-precise measurement of the weak mixing angle using Møller scattering, arXiv: 1411.4088 [nucl-ex]
32 J. Formaggio and G. Zeller, From eV to EeV: Neutrino cross sections across energy scales, Rev. Mod. Phys. 84(3), 1307 (2012)
https://doi.org/10.1103/RevModPhys.84.1307
33 G. P. Zeller, et al. (NuTeV Collaboration), Precise determination of electroweak parameters in neutrino-nucleon scattering, Phys. Rev. Lett. 88, 091802 (2002)
https://doi.org/10.1103/PhysRevLett.88.091802
34 C. S. Wood, S. C. Bennett, D. Cho, B. P. Masterson, J. L. Roberts, C. E. Tanner, and C. E. Wieman, Measurement of parity nonconservation and an anapole moment in cesium, Science 275(5307), 1759 (1997)
https://doi.org/10.1126/science.275.5307.1759
35 G. S. Giri, O. O. Versolato, L. W. Wansbeek, J. E. van den Berg, D. J. van der Hoek, K. Jungmann, W. L. Kruithof, C. J. G. Onderwater, B. K. Sahoo, B. Santra, P. D. Shidling, R. G. E. Timmermans, L. Willmann, and H. W. Wilschut, Precision spectroscopy of trapped radioactive radium ions, Can. J. Phys. 89(1), 69 (2011)
https://doi.org/10.1139/P10-089
36 H. Frauenfelder and E. Henley, Subatomic Physics, NY: John Wiley and Sons, 1974
37 O. Moreno, T. Donnelly, R. Gonzalez-Jimenez, and J. Caballero, Evaluation of theoretical uncertainties in parityviolating electron scattering from nucleons and nuclei, J. Phys. G 42(3), 034006 (2015)
https://doi.org/10.1088/0954-3899/42/3/034006
38 T. Donnelly, J. Dubach, and I. Sick, Isospin dependences in parity-violating electron scattering, Nucl. Phys. A. 503(3–4), 589 (1989)
https://doi.org/10.1016/0375-9474(89)90432-6
39 M. J. Musolf and B. R. Holstein, Electroweak corrections to parity-violating neutral current scattering, Phys. Lett. B 242(3–4), 461 (1990)
https://doi.org/10.1016/0370-2693(90)91794-C
40 A. Czarnecki and W. J. Marciano, Electroweak radiative corrections to polarized Møller scattering asymmetries, Phys. Rev. D 53(3), 1066 (1996)
https://doi.org/10.1103/PhysRevD.53.1066
41 S. L. Zhu, S. J. Puglia, B. R. Holstein, and M. J. Ramsey- Musolf, Nucleon anapole moment and parity-violating ep scattering, Phys. Rev. D 62(3), 033008 (2000)
https://doi.org/10.1103/PhysRevD.62.033008
42 N. Hall, P. Blunden, W. Melnitchouk, A. Thomas, and R. Young, Hadronic γZbox corrections in Møller scattering, Phys. Lett. B 731, 287 (2014)
https://doi.org/10.1016/j.physletb.2014.02.049
43 M. Gorchtein, C. Horowitz, and M. J. Ramsey-Musolf, Model dependence of the γZdispersion correction to the parity-violating asymmetry in elastic epscattering, Phys. Rev. C 84(1), 015502 (2011)
https://doi.org/10.1103/PhysRevC.84.015502
44 D. H. Beck, Strange-quark vector currents and parityviolating electron scattering from the nucleon and from nuclei, Phys. Rev. D 39(11), 3248 (1989)
https://doi.org/10.1103/PhysRevD.39.3248
45 C. J. Horowitz, Parity violating elastic electron scattering and Coulomb distortions, Phys. Rev. C 57(6), 3430 (1998)
https://doi.org/10.1103/PhysRevC.57.3430
46 C. J. Horowitz, S. J. Pollock, P. A. Souder, and R. Michaels, Parity violating measurements of neutron densities, Phys. Rev. C 63(2), 025501 (2001)
https://doi.org/10.1103/PhysRevC.63.025501
47 T. Hobbs and W. Melnitchouk, Finite-Q2 corrections to parity-violating DIS, Phys. Rev. D 77(11), 114023 (2008)
https://doi.org/10.1103/PhysRevD.77.114023
48 G. R. Farrar and D. R. Jackson, Pion and nucleon structure functions near x= 1, Phys. Rev. Lett. 35(21), 1416 (1975)
https://doi.org/10.1103/PhysRevLett.35.1416
49 J. T. Londergan, J. C. Peng, and A. W. Thomas, Charge symmetry at the partonic level, Rev. Mod. Phys. 82(3), 2009 (2010)
https://doi.org/10.1103/RevModPhys.82.2009
50 W. Bentz, I. C. Cloëet, J. T. Londergan, and A. W. Thomas, Reassessment of the NuTeV determination of the weak mixing angle, Phys. Lett. B 693(4), 462 (2010)
https://doi.org/10.1016/j.physletb.2010.09.001
51 M. Glück, P. Jimenez-Delgado, and E. Reya, Radiatively generated isospin violations in the nucleon and the NuTeV anomaly, Phys. Rev. Lett. 95(2), 022002 (2005)
https://doi.org/10.1103/PhysRevLett.95.022002
52 A. D. Martin, R. G. Roberts, W. J. Stirling, and R. S. Thorne, Parton distributions incorporating QED contributions, Eur. Phys. J. C 39(2), 155 (2005)
https://doi.org/10.1140/epjc/s2004-02088-7
53 C. Boros, F. M. Steffens, J. T. Londergan, and A. W. Thomas, A new analysis of charge symmetry violation in parton distributions, Phys. Lett. B 468(1–2), 161 (1999)
https://doi.org/10.1016/S0370-2693(99)01154-5
54 J. D. Bjorken, Model-independent remarks on electronquark parity-violating neutral-current couplings, Phys. Rev. D 18(9), 3239 (1978)
https://doi.org/10.1103/PhysRevD.18.3239
55 L. Wolfenstein, Testing the Weinberg–Salam model in polarized edand epdeep inelastic scattering, Nucl. Phys. B 146(2), 477 (1978)
https://doi.org/10.1016/0550-3213(78)90080-9
56 S. Mantry, M. J. Ramsey-Musolf, and G. F. Sacco, Examination of higher-order twist contributions in parity-violating deep-inelastic electron-deuteron scattering, Phys. Rev. C 82(6), 065205 (2010)
https://doi.org/10.1103/PhysRevC.82.065205
57 C. Y. Seng and M. J. Ramsey-Musolf, Parity-violating deepinelastic electron–deuteron scattering: Higher twist and parton angular momentum, Phys. Rev. C 88(1), 015202 (2013)
https://doi.org/10.1103/PhysRevC.88.015202
58 J. Qiu, Twist-4 contributions to the hadron structure functions, Phys. Rev. D 42(1), 30 (1990)
https://doi.org/10.1103/PhysRevD.42.30
59 E. Stein, M. Maul, L. Mankiewicz, and A. Schäfer, Renormalon model predictions for power corrections to flavorsinglet deep-inelastic structure functions, Nucl. Phys. B 536(1–2), 318 (1998)
https://doi.org/10.1016/S0550-3213(98)00640-3
60 A. I. Signal, Calculations of higher twist distribution functions in the MIT bag model, Nucl. Phys. B 497(1–2), 415 (1997)
https://doi.org/10.1016/S0550-3213(97)00231-9
61 A. V. Belitsky, A. Manashov, and A. Schäfer, Twist-four corrections to parity-violating electron–deuteron scattering, Phys. Rev. D 84(1), 014010 (2011)
https://doi.org/10.1103/PhysRevD.84.014010
62 W. Melnitchouk, I. R. Afnan, F. Bissey, and A. W. Thomas, Comment on “Parton distributions, d/u, and higher twist effects at high x”, Phys. Rev. Lett. 84(23), 5455 (2000)
https://doi.org/10.1103/PhysRevLett.84.5455
63 J. F. Owens, A. Accardi, and W. Melnitchouk, Global parton distributions with nuclear and finite-Q2 corrections, Phys. Rev. D 87(9), 094012 (2013)
https://doi.org/10.1103/PhysRevD.87.094012
64 E. Derman and W. J. Marciano, Parity violating asymmetries in polarized electron scattering, Ann. Phys. 121(1–2), 147 (1979)
https://doi.org/10.1016/0003-4916(79)90095-2
65 C. K. Sinclair, P. A. Adderley, B. M. Dunham, J. C. Hansknecht, P. Hartmann, M. Poelker, J. S. Price, P. M. Rutt, W. J. Schneider, and M. Steigerwald, Development of a high average current polarized electron source with long cathode operational lifetime, Phys. Rev. ST Accel. Beams 10(2), 023501 (2007)
https://doi.org/10.1103/PhysRevSTAB.10.023501
66 P. A. Adderley, J. Clark, J. Grames, J. Hansknecht, K. Surles-Law, D. Machie, M. Poelker, M. L. Stutzman, and R. Suleiman, Load-locked dc high voltage GaAs photogun with an inverted-geometry ceramic insulator, Phys. Rev. ST Accel. Beams 13(1), 010101 (2010)
https://doi.org/10.1103/PhysRevSTAB.13.010101
67 K. S. Kumar and P. A. Souder, Strange quarks and parity violation, Prog. Part. Nucl. Phys. 45, S333 (2000)
https://doi.org/10.1016/S0146-6410(00)00110-1
68 K. D. Paschke, Controlling helicity-correlated beam asymmetries in a polarized electron source, Eur. Phys. J. A 32(4), 549 (2007)
https://doi.org/10.1140/epja/i2006-10442-8
69 D. Androi et al. (Qweak Collaboration), First Determination of the Weak Charge of the Proton, Phys. Rev. Lett. 111(14), 141803 (2013)
https://doi.org/10.1103/PhysRevLett.111.141803
70 E. Beise, D. Beck, E. Candell, R. Carr, F. Duncan, T. Forest, W. Korsch, J. W. Mark, R. D. McKeown, B. A. Mueller, M. Pitt, and S. Wells, A high power liquid hydrogen target for parity violation experiments, Nucl. Instrum. Methods A 378(3), 383 (1996)
https://doi.org/10.1016/0168-9002(96)00489-5
71 P. A. Souder and R. Holmes, New spectrometers for precision measurements of parity violation with polarized electrons, Proc. Parity violation in electron scattering, World Scientific, Pasadena, CA,<Date> Feb. 23–24</Date>, 1990, pp. 137–151
72 J. Alcornć, B. Anderson, K. Aniol, J. Annand, L. Auerbach, et al., Basic instrumentation for Hall A at Jefferson Lab, Nucl. Instrum. Methods A 522(3), 294 (2004)
https://doi.org/10.1016/j.nima.2003.11.415
73 D. Wang, et al. (Jefferson Lab PVDIS Collaboration), Measurement of parity violation in electron-quark scattering, Nature 506, 67 (2014)
https://doi.org/10.1038/nature12964
74 D. Wang, K. Pan, R. Subedi, Z. Ahmed, K. Allada, et al., Measurement of parity-violating asymmetry in electrondeuteron inelastic scattering, Phys. Rev. C 91(4), 045506 (2015)
https://doi.org/10.1103/PhysRevC.91.045506
75 D. Androić, et al. (G0 Collaboration), The G0 experiment: Apparatus for parity-violating electron scattering measurements at forward and backward angles, Nucl. Instrum. Methods A 646(1), 59 (2011)
https://doi.org/10.1016/j.nima.2011.04.031
76 P. Achenbach, S. Baunack, K. Grimm, T. Hammel, D. von- Harrach, A. L. Ginja, F. E. Maas, E. Schilling, and H. Ströoher, Measurements and simulations of Cherenkov light in lead fluoride crystals, Nucl. Instrum. Methods A 465(2–3), 318 (2001)
https://doi.org/10.1016/S0168-9002(01)00668-4
77 S. Baunack, et al. (A4 Collaboration), Real-time calibration of the A4 electromagnetic lead fluoride (PbF2) calorimeter, Nucl. Instrum. Methods A 640, 58 (2011)
https://doi.org/10.1016/j.nima.2011.02.099
78 P. Souder, Parity-violating DIS at JLab with 12 GeV, in: Proceedings, 16th International Workshop on Deep Inelastic Scattering and Related Subjects (DIS 2008), Conf. Proc. C 0804071, 243 (2008)
79 P. Cooper, M. Alguard, R. Ehrlich, V. Hughes, H. Kobayakawa, J. S. Ladish, M. S. Lubell, N. Sasao, K. P. Schüuler, P. A. Souder, G. Baum, W. Raith, K. Kondo, D. H. Coward, R. H. Miller, C. Y. Prescott, D. J. Sherden, and C. K. Sinclair, Polarized electron-electron scattering at GeV energies, Phys. Rev. Lett. 34(25), 1589 (1975)
https://doi.org/10.1103/PhysRevLett.34.1589
80 L. Levchuk, The intra-atomic motion of bound electrons as a possible source of the systematic error in electron beam polarization measurements by means of a Møller polarimeter, Nucl. Instrum. Methods A 345(3), 496 (1994)
https://doi.org/10.1016/0168-9002(94)90505-3
81 E. Chudakov and V. Luppov, Moller polarimetry with atomic hydrogen targets, IEEE Trans. Nucl. Sci. 51(4), 1533 (2004)
https://doi.org/10.1109/TNS.2004.832575
82 M. Friend, D. Parno, F. Benmokhtar, A. Camsonne, M. Dalton, G. B. Franklin, V. Mamyan, R. Michaels, S. Nanda, V. Nelyubin, K. Paschke, B. Quinn, A. Rakhman, P. Souder, and A. Tobias, Upgraded photon calorimeter with integrating readout for the Hall A Compton polarimeter at Jefferson Lab, Nucl. Instrum. Methods A 676, 96 (2012)
https://doi.org/10.1016/j.nima.2012.02.041
83 A. Narayan, et al., Precision electron-beam polarimetry using Compton scattering at 1 GeV, arXiv: 1509.06642 [nuclex]
84 R. D. Young, J. Roche, R. D. Carlini, and A. W. Thomas, Extracting nucleon strange and anapole form factors from world data, Phys. Rev. Lett. 97(10), 102002 (2006)
https://doi.org/10.1103/PhysRevLett.97.102002
85 J. Liu, R. D. McKeown, and M. J. Ramsey-Musolf, Global analysis of nucleon strange form factors at low Q2, Phys. Rev. C 76(2), 025202 (2007)
https://doi.org/10.1103/PhysRevC.76.025202
86 R. Gonzalez-Jimenez, J. A. Caballero, and T. W. Donnelly, Parity violation in elastic electron-nucleon scattering: Strangeness content in the nucleon, arXiv: 1111.6918 [nuclth]
87 K. Paschke, A. Thomas, R. Michaels, and D. Armstrong, Strange vector form factors from parity-violating electron scattering, J. Phys. Conf. Ser. 299, 012003 (2011)
https://doi.org/10.1088/1742-6596/299/1/012003
88 D. S. Armstrong and R. D. McKeown, Parity-violating electron scattering and the electric and magnetic strange form factors of the nucleon, Annu. Rev. Nucl. Part. Sci. 62(1), 337 (2012)
https://doi.org/10.1146/annurev-nucl-102010-130419
89 R. Gonzalez-Jimenez, J. A. Caballero, and T. W. Donnelly, Global analysis of parity-violating asymmetry data for elastic electron scattering, Phys. Rev. D 90(3), 033002 (2014)
https://doi.org/10.1103/PhysRevD.90.033002
90 P. E. Shanahan, R. Horsley, Y. Nakamura, D. Pleiter, P. E. L. Rakow, G. Schierholz, H. Stüuben, A. W. Thomas, R. D. Young, and J. M. Zanotti, Determination of the strange nucleon form factors, Phys. Rev. Lett. 114(9), 091802 (2015)
https://doi.org/10.1103/PhysRevLett.114.091802
91 J. Green, S. Meinel, and M. Engelhardt, S. Krieg, J. Laeuchli, J. Negele, K. Orginos, A. Pochinsky, and S. Syritsyn, High-precision calculation of the strange nucleon electromagnetic form factors, Phys. Rev. D 92(3), 031501 (2015), arXiv: 1505.01803 [hep-lat]
92 P. Langacker, The physics of heavy Z′gauge bosons, Rev. Mod. Phys. 81(3), 1199 (2009)
https://doi.org/10.1103/RevModPhys.81.1199
93 T. G. Rizzo, Z′ phenomenology and the LHC, arXiv: hepph/0610104
94 E. Eichten, K. D. Lane, and M. E. Peskin, New tests for quark and lepton substructure, Phys. Rev. Lett. 50(11), 811 (1983)
https://doi.org/10.1103/PhysRevLett.50.811
95 M. R. Buckley and M. J. Ramsey-Musolf, Precision probes of a leptophobic Z′ boson, Phys. Lett. B 712(3), 261 (2012)
https://doi.org/10.1016/j.physletb.2012.04.077
96 M. Gonzalez-Alonso and M. J. Ramsey-Musolf, Leptophobic Z′ boson and parity-violating eD scattering, Phys. Rev. D 87(5), 055013 (2013)
https://doi.org/10.1103/PhysRevD.87.055013
97 T. Aaltonen, et al. (CDF Collaboration), Invariant mass distribution of jet pairs produced in association with a Wboson in pp ¯ collisions at s=1.96 TeV, Phys. Rev. Lett. 106, 171801 (2011)
https://doi.org/10.1103/PhysRevLett.106.171801
98 M. R. Buckley, D. Hooper, and J. L. Rosner, A leptophobic Z′ and dark matter from grand unification, Phys. Lett. B 703(3), 343 (2011)
https://doi.org/10.1016/j.physletb.2011.08.014
99 J. E. Kim and G. Carosi, Axions and the strong CP problem, Rev. Mod. Phys. 82(1), 557 (2010)
https://doi.org/10.1103/RevModPhys.82.557
100 P. Fayet, Parity violation effects induced by a new gauge boson, Phys. Lett. B 96(1–2), 83 (1980)
https://doi.org/10.1016/0370-2693(80)90217-8
101 C. Bouchiat and P. Fayet, Constraints on the parityviolating couplings of a new gauge boson, Phys. Lett. B 608(1–2), 87 (2005)
https://doi.org/10.1016/j.physletb.2004.12.065
102 B. Holdom, Two U(1)’s and charge shifts, Phys. Lett. B 166(2), 196 (1986)
https://doi.org/10.1016/0370-2693(86)91377-8
103 H. Davoudiasl, H. S. Lee, and W. J. Marciano, Dark side of Higgs diphoton decays and muon g−2, Phys. Rev. D 86(9), 095009 (2012)
https://doi.org/10.1103/PhysRevD.86.095009
104 H. Davoudiasl, H. S. Lee, and W. J. Marciano, “Dark” Z implications for parity violation, rare meson decays, and Higgs physics, Phys. Rev. D 85(11), 115019 (2012)
https://doi.org/10.1103/PhysRevD.85.115019
105 A. Kurylov, M. J. Ramsey-Musolf, and S. Su, Probing supersymmetry with parity-violating electron scattering, Phys. Rev. D 68, 035008 (2003)
https://doi.org/10.1103/PhysRevD.68.035008
106 G. Aad, et al. (ATLAS Collaboration), Muon reconstruction efficiency and momentum resolution of the ATLAS experiment in proton–proton collisions at s= 7 TeV in 2010, Eur. Phys. J. C 74, 3134 (2014)
https://doi.org/10.1140/epjc/s10052-014-3134-6
107 V. Khachatryan, et al. (CMS Collaboration), Search for quark contact interactions and extra spatial dimensions using dijet angular distributions in proton–proton collisions at s= 8 TeV, Phys. Lett. B 746, 79 (2015)
https://doi.org/10.1016/j.physletb.2015.04.042
108 F. D. Aaron, et al. (H1 Collaboration), Search for contact interactions in e±pcollisions at HERA, Phys. Lett. B 705, 52 (2011)
https://doi.org/10.1016/j.physletb.2011.09.109
109 G. Abbiendi, et al. (OPAL Collaboration), Tests of the standard model and constraints on new physics from measurements of fermion-pair production at 189–209 GeV at LEP, Eur. Phys. J. C 33, 173 (2004)
https://doi.org/10.1140/epjc/s2004-01595-9
110 S. Typel and B. A. Brown, Neutron radii and the neutron equation of state in relativistic models, Phys. Rev. C 64, 027302 (2001)
https://doi.org/10.1103/PhysRevC.64.027302
111 J. Aasi, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009–2010, Phys. Rev. D 87, 022002 (2013)
https://doi.org/10.1103/PhysRevD.87.022002
112 J. Aasi, et al. (LIGO Scientific), Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light, Nature Photon. 7, 613 (2013)
https://doi.org/10.1038/nphoton.2013.177
113 C. J. Horowitz and Kai Kadau, Breaking strain of neutron star crust and gravitational waves, Phys. Rev. Lett. 102, 191102 (2009)
https://doi.org/10.1103/PhysRevLett.102.191102
114 C. J. Horowitz and J. Piekarewicz, Constraining URCA cooling of neutron stars from the neutron radius of 208Pb, Phys. Rev. C 66, 055803 (2002)
https://doi.org/10.1103/PhysRevC.66.055803
115 G. Hagen, T. Papenbrock, M. Hjorth-Jensen, and D. J. Dean, Coupled-cluster computations of atomic nuclei, Rept. Prog. Phys. 77, 096302 (2014)
https://doi.org/10.1088/0034-4885/77/9/096302
[1] Alice K. Harding. The neutron star zoo[J]. Front. Phys. , 2013, 8(6): 679-692.
[2] Shuang-Nan Zhang. Black hole binaries and microquasars[J]. Front. Phys. , 2013, 8(6): 630-660.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed