Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2015, Vol. 10 Issue (4) : 104206    https://doi.org/10.1007/s11467-015-0494-9
RESEARCH ARTICLE
Discrete vortices on anisotropic lattices
Gui-Hua Chen(),Hong-Cheng Wang,Zi-Fa Chen
Department of Electronic Engineering, Dongguan University of Technology, Dongguan 523808, China
 Download: PDF(1592 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We consider the effects of anisotropy on two types of localized states with topological charges equal to 1 in two-dimensional nonlinear lattices, using the discrete nonlinear Schr?dinger equation as a paradigm model. We find that on-site-centered vortices with different propagation constants are not globally stable, and that upper and lower boundaries of the propagation constant exist. The region between these two boundaries is the domain outside of which the on-site-centered vortices are unstable. This region decreases in size as the anisotropy parameter is gradually increased. We also consider off-site-centered vortices on anisotropic lattices, which are unstable on this lattice type and either transform into stable quadrupoles or collapse. We find that the transformation of off-sitecentered vortices into quadrupoles, which occurs on anisotropic lattices, cannot occur on isotropic lattices. In the quadrupole case, a propagation-constant region also exists, outside of which the localized states cannot stably exist. The influence of anisotropy on this region is almost identical to its effects on the on-site-centered vortex case.

Keywords anisotropy      discrete vortex      quadrupole      localized state     
Corresponding Author(s): Gui-Hua Chen   
Issue Date: 17 August 2015
 Cite this article:   
Gui-Hua Chen,Hong-Cheng Wang,Zi-Fa Chen. Discrete vortices on anisotropic lattices[J]. Front. Phys. , 2015, 10(4): 104206.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-015-0494-9
https://academic.hep.com.cn/fop/EN/Y2015/V10/I4/104206
1 D. N. Christodoulides, F. Lederer, and Y. Silberberg, Discretizing light behaviour in linear and nonlinear waveguide lattices, Nature 424(6950), 817 (2003)
https://doi.org/10.1038/nature01936
2 F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, Discrete solitons in optics, Phys. Rep. 463(1-3), 1 (2008)
https://doi.org/10.1016/j.physrep.2008.04.004
3 I. L. Garanovich, S. Longhi, A. A. Sukhorukov, and Y. S. Kivshar, Light propagation and localization in modulated photonic lattices and waveguides, Phys. Rep. 518(1-2), 1 (2012)
https://doi.org/10.1016/j.physrep.2012.03.005
4 Z. Chen, M. Segev, and D. N. Christodoulides, Optical spatial solitons: Historical overview and recent advances, Prog. Phys. 75(8), 086401 (2012)
https://doi.org/10.1088/0034-4885/75/8/086401
5 C. Lou, L. Tang, D. Song, X. Wang, J. Xu, and Z. Chen, Novel spatial solitons in light-induced photonic bandgap structures, Front. Phys. 3(1), 1 (2008)
https://doi.org/10.1007/s11467-008-0007-1
6 Y. Li, W. Pang, Y. Chen, Z. Yu, J. Zhou, and H. Zhang, Defect-mediated discrete solitons in optically induced photorefractive lattices, Phys. Rev. A 80(4), 043824 (2009)
https://doi.org/10.1103/PhysRevA.80.043824
7 Y. Li, B. A. Malomed, J. Wu, W. Pang, S. Wang, and J. Zhou, Quasicompactons in inverted nonlinear photonic crystals, Phys. Rev. A 84(4), 043839 (2011)
https://doi.org/10.1103/PhysRevA.84.043839
8 J. H. Huang, H. J. Li, X. Y. Zhang, and Y. Y. Li, Transmission, reflection, scattering, and trapping of traveling discrete solitons by c and v point defects, Front. Phys. 10(2), 104201 (2015)
https://doi.org/10.1007/s11467-014-0452-y
9 Y. Zhang, K. Lu, M. Zhang, K. Li, S. Liu, and Y. Zhang, Dynamics of incoherent photovoltaic spatial solitons, Chin. Phys. Lett. 3, 132 (2009)
10 B. Lü and Q. Tian, Discrete breathers in a two-dimensional Morse lattice with an on-site harmonic potential, Front. Phys. 4(4), 497 (2009)
https://doi.org/10.1007/s11467-009-0062-2
11 W. Pang, J. Wu, Z. Yuan, Y. Liu, and G. Chen, Lattice solitons in optical lattice controlled by electromagnetically induced transparency, J. Phys. Soc. Jpn. 80(11), 113401 (2011)
https://doi.org/10.1143/JPSJ.80.113401
12 Y. Zhang, Z. Wang, Z. Nie, C. Li, H. Chen, K. Lu, and M. Xiao, Four-wave mixing dipole soliton in laser-induced atomic gratings, Phys. Rev. Lett. 106(9), 093904 (2011)
https://doi.org/10.1103/PhysRevLett.106.093904
13 Y. Zhang, Z. Nie, Y. Zhao, C. Li, R. Wang, J. Si, and M. Xiao, Modulated vortex solitons of four-wave mixing, Opt. Express 18(11), 10963 (2010)
https://doi.org/10.1364/OE.18.010963
14 Y. Zhang, C. Yuan, Y. Zhang, H. Zheng, H. Chen, C. Li, Z. Wang, and M. Xiao, Surface solitons of four-wave mixing in an electromagnetically induced lattice, Laser Phys. Lett. 10(5), 055406 (2013)
https://doi.org/10.1088/1612-2011/10/5/055406
15 R. Wang, Z. Wu, Y. Zhang, Z. Zhang, C. Yuan, H. Zheng, Y. Li, J. Zhang, and Y. Zhang, Observation of multi-component spatial vector solitons of four-wave mixing, Opt. Express 20(13), 14168 (2012)
https://doi.org/10.1364/OE.20.014168
16 Y. Zhang, Z. Wu, C. Yuan, X. Yao, K. Lu, M. Belíc, and Y. Zhang, Optical vortices induced in nonlinear multilevel atomic vapors, Opt. Lett. 37(21), 4507 (2012)
https://doi.org/10.1364/OL.37.004507
17 G. Chen, Z. Huang, and Z. Mai, Two-dimensional discrete Anderson location in waveguide matrix, J. Nonlinear Opt. Phys. 23(03), 1450033 (2014)
https://doi.org/10.1142/S0218863514500337
18 X. Y. Zhang, J. L. Chai, J. S. Huang, Z. Q. Chen, Y. Y. Li, and B. A. Malomed, Discrete solitons and scattering of lattice waves in guiding arrays with a nonlinear PT-symmetric defect, Opt. Express 22(11), 13927 (2014)
https://doi.org/10.1364/OE.22.013927
19 B. A. Malomed and P. G. Kevrekidis, Discrete vortex solitons, Phys. Rev. E 64(2), 026601 (2001)
https://doi.org/10.1103/PhysRevE.64.026601
20 J. Yang and Z. H. Musslimani, Fundamental and vortex solitons in a two-dimensional optical lattice, Opt. Lett. 28(21), 2094 (2003)
https://doi.org/10.1364/OL.28.002094
21 H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, Discrete solitons and soliton-induced dislocations in partially coherent photonic lattices, Phys. Rev. Lett. 92(12), 123902 (2004)
https://doi.org/10.1103/PhysRevLett.92.123902
22 D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, Observation of discrete vortex solitons in optically induced photonic lattices, Phys. Rev. Lett. 92(12), 123903 (2004)
https://doi.org/10.1103/PhysRevLett.92.123903
23 J. W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, and D. N. Christodoulides, Observation of vortex-ring “discrete” solitons in 2D photonic lattices, Phys. Rev. Lett. 92(12), 123904 (2004)
https://doi.org/10.1103/PhysRevLett.92.123904
24 P. G. Kevrekidis, B. A. Malomed, Z. Chen, and D. J. Frantzeskakis, Stable higher-order vortices and quasivortices in the discrete nonlinear Schr?dinger equation, Phys. Rev. E 70(5), 056612 (2004)
https://doi.org/10.1103/PhysRevE.70.056612
25 T. J. Alexander, A. A. Sukhorukov, and Y. S. Kivshar, Asymmetric vortex solitons in nonlinear periodic lattices, Phys. Rev. Lett. 93(6), 063901 (2004)
https://doi.org/10.1103/PhysRevLett.93.063901
26 D. E. Pelinovsky, P. G. Kevrekidis, and D. J. Frantzeskakis, Nonlinear schr?dinger lattices (ii): Persistence and stability of discrete vortices, arXiv: nlin/0411016v1 (2004)
27 Z. Chen, J. Liu, S. Fu, Y. Li, and B. A. Malomed, Discrete solitons and vortices on two-dimensional lattices of Ptsymmetric couplers, Opt. Express 22(24), 29679 (2014)
https://doi.org/10.1364/OE.22.029679
28 Y. Zhang, M. Belíc, Z. Wu, C. Yuan, R. Wang, K. Lu, and Y. Zhang, Multicharged optical vortices induced in a dissipative atomic vapor system, Phys. Rev. A 88(1), 013847 (2013)
https://doi.org/10.1103/PhysRevA.88.013847
29 H. Li, X. Zhu, Z. Shi, B. A. Malomed, T. Lai, and C. Lee, Bulk vortices and half-vortex surface modes in parity-timesymmetric media, Phys. Rev. A 89(5), 053811 (2014)
https://doi.org/10.1103/PhysRevA.89.053811
30 G. Chen, H. Huang, and M. Wu, Solitary vortices in twodimensional waveguide matrix, J. Nonlinear Opt. Phys. 24, 1550012 (2015)
https://doi.org/10.1142/S0218863515500125
31 J. Yang, I. Makasyuk, H. Martin, P. G. Kevrekidis, B. A. Malomed, D. J. Frantzeskakis, and Z. Chen, Necklace-like solitons in optically induced photonic lattices, Phys. Rev. Lett. 94(11), 113902 (2005)
https://doi.org/10.1103/PhysRevLett.94.113902
32 P. G. Kevrekidis, B. A. Malomed, D. J. Frantzeskakis, and R. Carretero-González, Three dimensional solitary waves and vortices in a discrete nonlinear Schr?dinger lattice, Phys. Rev. Lett. 93(8), 080403 (2004)
https://doi.org/10.1103/PhysRevLett.93.080403
33 P. G. Kevrekidis, D. J. Frantzeskakis, R. Carretero-González, B. A. Malomed, and A. R. Bishop, Discrete solitons and vortices on anisotropic lattices, Phys. Rev. E 72(4), 046613 (2005)
https://doi.org/10.1103/PhysRevE.72.046613
34 T. Mayteevarunyooa, B. A. Malomed, B. B. Baizakov, and M. Salerno, Matter-wave vortices and solitons in anisotropic optical lattices, Physica D 238(15), 1439 (2009)
https://doi.org/10.1016/j.physd.2008.07.024
35 N. K. Efremidis, S. Sears, D. N. Christodoulides, J.W. Fleischer, and M. Segev, Discrete solitons in photorefractive optically induced photonic lattices, Phys. Rev. E 66(4), 046602 (2002)
https://doi.org/10.1103/PhysRevE.66.046602
36 A. A. Sukhorukov, Y. S. Kivshar, H. S. Eisenberg, and Y. Silberberg, Spatial optical solitons in waveguide arrays, IEEE J. Quantum Electron. 39(1), 31 (2003)
https://doi.org/10.1109/JQE.2002.806184
37 J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Observation of discrete solitons in optically induced real time waveguide arrays, Phys. Rev. Lett. 90(2), 023902 (2003)
https://doi.org/10.1103/PhysRevLett.90.023902
38 J. Yang, I. Makasyuk, A. Bezryadina, and Z. Chen, Dipole solitons in optically induced two-dimensional photonic lattices, Opt. Lett. 29(14), 1662 (2004)
https://doi.org/10.1364/OL.29.001662
39 Z. Chen, H. Martin, E. D. Eugenieva, J. Xu, and A. Bezryadina, Anisotropic enhancement of discrete diffraction and formation of two-dimensional discrete-soliton trains, Phys. Rev. Lett. 92(14), 143902 (2004)
https://doi.org/10.1103/PhysRevLett.92.143902
40 Z. Chen, A. Bezryadina, I. Makasyuk, and J. Yang, Observation of two-dimensional lattice vector solitons, Opt. Lett. 29(14), 1656 (2004)
https://doi.org/10.1364/OL.29.001656
41 Y. Li, B. A. Malomed, M. Feng, and J. Zhou, Arrayed and checkerboard optical waveguides controlled by the electromagnetically induced transparency, Phys. Rev. A 82(6), 063813 (2010)
https://doi.org/10.1103/PhysRevA.82.063813
42 J. Wu, M. Feng, W. Pang, S. Fu, and Y. Li, The transmission of quasi-discrete solitons in resonant waveguide arrays activated by the electromagnetically induced transparency, J. Nonlinear Opt. Phys. 20(02), 193 (2011)
https://doi.org/10.1142/S0218863511006029
43 P. G. Kevrekidis and D. J. Frantzeskakis, Pattern forming dynamical instabilities of Bose-Einstein condensates, Mod. Phys. Lett. B 18(05n06), 173 (2004)
44 V. A. Brazhnyi and V. V. Konotop, Theory of nonlinear matter waves in optical lattices, Mod. Phys. Lett. B 18(14), 627 (2004)
https://doi.org/10.1142/S0217984904007190
45 P. G. Kevrekidis, R. Carretero-González, D. J. Frantzeskakis, and I. G. Kevrekidis, Vortices in Bose-Einstein condensates: Some recent developments, Mod. Phys. Lett. B 18(30), 1481 (2004)
https://doi.org/10.1142/S0217984904007967
46 M. I. Weinstein, Excitation thresholds for nonlinear localized modes on lattices, Nonlinearity 12(3), 673 (1999)
https://doi.org/10.1088/0951-7715/12/3/314
47 P. G. Kevrekidis, K. O. Rasmussen, and A. R. Bishop, Twodimensional discrete breathers: Construction, stability, and bifurcations, Phys. Rev. E 61(2), 2006 (2000)
https://doi.org/10.1103/PhysRevE.61.2006
48 P. G. Kevrekidis, K. O. Rasmussen, and A. R. Bishop, Localized excitations and their thresholds, Phys. Rev. E 61(4), 4652 (2000)
https://doi.org/10.1103/PhysRevE.61.4652
49 P. G. Kevrekidis, The Discrete Nonlinear Schr?dinger Equation: Mathematical Analysis, Numerical Computations and Physical Perspectives, Springer, 2009
https://doi.org/10.1007/978-3-540-89199-4
[1] Ming-Xiu Sui, Zi-Bo Zhang, Xiao-Dan Chi, Jia-Yu Zhang, Yong Hu. Dense skyrmion crystal stabilized through interfacial exchange coupling: Role of in-plane anisotropy[J]. Front. Phys. , 2021, 16(2): 23501-.
[2] San-Dan Wang, Jin-Peng Yuan, Li-Rong Wang, Lian-Tuan Xiao, Suo-Tang Jia. Investigation on the Cs 6S1/2 to 7D electric quadrupole transition via monochromatic two-photon process at 767 nm[J]. Front. Phys. , 2021, 16(1): 12502-.
[3] Lin Fa, Jiaojiao Tang, Qi Zhang, Minjin Zhang, Yandong Zhang, Meng Liang, Meishan Zhao. Reflection and refraction of elastic wave at VTI-TTI media interface[J]. Front. Phys. , 2020, 15(2): 22601-.
[4] Ai-Yuan Hu, Lin Wen, Guo-Pin Qin, Zhi-Min Wu, Peng Yu, Yu-Ting Cui. Possible phase transition of anisotropic frustrated Heisenberg model at finite temperature[J]. Front. Phys. , 2019, 14(5): 53601-.
[5] Zhi-Qiang Wang, Tie-Yu Lü, Hui-Qiong Wang, Yuan Ping Feng, Jin-Cheng Zheng. Review of borophene and its potential applications[J]. Front. Phys. , 2019, 14(3): 33403-.
[6] Jun-Chi Wu, Xu Peng, Yu-Qiao Guo, Hao-Dong Zhou, Ji-Yin Zhao, Ke-Qin Ruan, Wang-Sheng Chu, Changzheng Wu. Ultrathin nanosheets of Mn3O4: A new two-dimensional ferromagnetic material with strong magnetocrystalline anisotropy[J]. Front. Phys. , 2018, 13(3): 138110-.
[7] V. Zhukova, J. M. Blanco, A. Chizhik, M. Ipatov, A. Zhukov. AC-current-induced magnetization switching in amorphous microwires[J]. Front. Phys. , 2018, 13(2): 137501-.
[8] Bing-Lin Young. A survey of dark matter and related topics in cosmology[J]. Front. Phys. , 2017, 12(2): 121201-.
[9] A. P. Durajski. Anisotropic evolution of energy gap in Bi2212 superconductor[J]. Front. Phys. , 2016, 11(5): 117408-.
[10] Jia-Sheng Huang, Xun-Da Jiang, Huai-Yu Chen, Zhi-Wei Fan, Wei Pang, Yong-Yao Li. Quadrupolar matter-wave soliton in two-dimensional free space[J]. Front. Phys. , 2015, 10(4): 100507-.
[11] Halqem Nizamidin,Abduwali Anwar,Sayipjamal Dulat,Kang Li. Quantum phase for an electric quadrupole moment in noncommutative quantum mechanics[J]. Front. Phys. , 2014, 9(4): 446-450.
[12] Fang WU (吴芳), Richard TJORNHAMMAR, Er-jun KAN (阚二军), Zhen-yu LI (李震宇). A first-principles study on the electronic structure of one-dimensional [TM(Bz)] polymer (TM= Y, Zr, Nb, Mo, and Tc)[J]. Front Phys Chin, 2009, 4(3): 403-407.
[13] CHEN Xiao-jun, CHEN Yong-qiang, XU Jian-pu, XU Jian-jun. Steady needle growth with 3-D anisotropic surface tension[J]. Front. Phys. , 2008, 3(4): 418-435.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed