Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2016, Vol. 11 Issue (1) : 116804    https://doi.org/10.1007/s11467-015-0516-7
RESEARCH ARTICLE
Geometries and electronic structures of the hydrogenated diamond (100) surface upon exposure to active ions: A first principles study
Feng-Bin Liu (刘峰斌)1,*(),Jing-Lin Li (李景林)2,Wen-Bin Chen (陈文彬)1,Yan Cui (崔岩)1,Zhi-Wei Jiao (焦志伟)1,Hong-Juan Yan (阎红娟)1,Min Qu (屈敏)1,Jie-Jian Di (狄杰建)1
1. College of Mechanical and Material Engineering, North China University of Technology, Beijing 100144, China
2. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
 Download: PDF(266 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To elucidate the effects of physisorbed active ions on the geometries and electronic structures of hydrogenated diamond films, models of HCO3 , H3O+, and OH ions physisorbed on hydrogenated diamond (100) surfaces were constructed. Density functional theory was used to calculate the geometries, adsorption energies, and partial density of states. The results showed that the geometries of the hydrogenated diamond (100) surfaces all changed to different degrees after ion adsorption. Among them, the H3O+ ion affected the geometry of the hydrogenated diamond (100) surfaces the most. This is well consistent with the results of the calculated adsorption energies, which indicated that a strong electrostatic attraction occurs between the hydrogenated diamond (100) surface and H3O+ ions. In addition, electrons transfer significantly from the hydrogenated diamond (100) surface to the adsorbed H3O+ ion, which induces a downward shift in the HOMO and LUMO energy levels of the H3O+ ion. However, for active ions like OH and HCO3 , no dramatic change appears for the electronic structures of the adsorbed ions.

Keywords active ions      diamond surface      adsorption      electronic structure     
Fund: 
Corresponding Author(s): Feng-Bin Liu (刘峰斌)   
Online First Date: 19 November 2015    Issue Date: 01 February 2016
 Cite this article:   
Hong-Juan Yan (阎红娟),Min Qu (屈敏),Jie-Jian Di (狄杰建), et al. Geometries and electronic structures of the hydrogenated diamond (100) surface upon exposure to active ions: A first principles study[J]. Front. Phys. , 2016, 11(1): 116804.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-015-0516-7
https://academic.hep.com.cn/fop/EN/Y2016/V11/I1/116804
1 M. I. Landstrass and K. V. Ravi, Hydrogen passivation of electrically active defects in diamond, Appl. Phys. Lett.55, 1391 (1989)
2 B. Rezek, D. Shin, H. Watanabe, and C. E. Nebel, Intrinsic hydrogen-terminated diamond as ion-sensitive field effect transistor, Sensor Actuat. B-Chem.122, 596 (2007)
3 C. Schreyvogel, M. Wolfer, H. Kato, M. Schreck, and C. E. Nebel, Tuned NV emission by in-plane Al-Schottky junctions on hydrogen terminated diamond, Sci. Rep.4, 3634 (2014)
4 H. Kawarada, H. Sasaki, and A. Sato, Scanning-tunneling-microscope observation of the homoepitaxial diamond (001) 2×1 reconstruction observed under atmospheric pressure, Phys. Rev. B 52, 11351 (1995)
5 K. Hayashi, S. Yamanaka, and H. Watanabe, Investigation of the effect of hydrogen on electrical and optical properties in chemical vapor deposited on homoepitaxial diamond films,J. Appl. Phys.81, 744 (1997)
6 F. B. Liu, J. D. Wang, D. R. Chen, M. Zhao, and G. P. He, The microstructures of the diamond (100) surfaces with different density of hydrogen adsorption, Acta Phys. Sin. 59, 6556 (2010) (in Chinese)
7 E. B. Lombardi, A. Mainwood, and K. Osuch, Interaction of hydrogen with boron, phosphorus, and sulfur in diamond, Phys. Rev. B 70, 205201 (2004)
8 K. Bobrov, A. J. Mayne, A. Hoffman, and G. Dujardin, Atomic-scale desorption of hydrogen from hydrogenated diamond surfaces using the STM, Surf. Sci.528, 138 (2003)
9 F. Maier, M. Riedel, B. Mantel, J. Ristein, and L. Ley, Origin of surface conductivity in diamond, Phys. Rev. Lett. 85, 3472 (2000)
10 J. P. Goss, B. Hourahine, R. Jones, M. I. Heggie, and P. R. Briddon, p-type surface doping of diamond: A first-principles study, J. Phys.: Condens. Matter 13, 8973 (2001)
11 M. M. Hassan and K. Larsson, Effect of surface termination on diamond (100) surface electrochemistry, J. Phys. Chem. C 118, 22995 (2014)
12 V. Chakrapani, J. C. Angus, A. B. Anderson, S. D. Wolter, B. R. Stoner, and G. U. Sumanasekera, Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple, Science 318, 1424 (2007)
13 Q. X. Zhou, C. Y. Wang, Z. B. Fu, Y. J. Tang, and H. Zhang, Effects of various defects on the electronic properties of single-walled carbon nanotubes: A first principle study, Front. Phys. 9, 200 (2014)
14 Z. J. Ding, Y. Jiao, and S. Meng, Quantum simulation of molecular interaction and dynamics at surfaces, Front. Phys. 6, 294 (2011)
15 J. Furthmüller, J. Hafner, and G. Kresse, Dimer reconstruction and electronic surface states on clean and hydrogenated diamond (100) surfaces, Phys. Rev. B 53, 7334 (1996)
16 K. Bobrov, A. Mayne, G. Comtet, G. Dujardin, L. Hellner, and A. Hoffman, Atomic-scale visualization and surface electronic structure of the hydrogenated diamond C (100)-(2×1): H surface, Phys. Rev. B 68, 195416 (2003)
17 M. J. Rutter and J. Robertson, Ab initio calculation of electron affinities of diamond surfaces, Phys. Rev. B 57, 9241 (1998)
18 F. Maier, J. Risten, and L. Ley, Electron affinity of plasmahydrogenated and chemically oxidized diamond (100) surfaces, Phys. Rev. B 64, 165411 (2001)
19 Y. Takagi, K. Shiraishi, M. Kasu, and H. Sato, Mechanism of hole doping into hydrogen terminated diamond by the adsorption of inorganic molecule, Surf. Sci. 609, 203 (2013)
20 H. Sato and M. Kasu, Electronic properties of H-terminated diamond during NO2 and O3 adsorption and desorption, Diamond Relat. Mater. 24, 99 (2012)
21 K. G. Girija, J. Nuwad, and R. K. Vatsa, Hydrogenated diamond as room temperature H2S sensor, Diamond Relat. Mater. 40, 38 (2013)
22 S. Beer, A. Helwig, G. Müller, J. Garrido, and M. Stutzmann, Water adsorbate mediated accumulation gas sensing at hydrogenated diamond surfaces, Sens. Actuat. B 181, 894 (2013)
23 A. Helwig, G. Müller, J. A. Garrido, and M. Eickhoff, Gas sensing properties of hydrogen-terminated diamond, Sens. Actuat. B 133, 156 (2008)
24 M. Kubovic, M. Kasu, and H. Kageshima, Electronic and surface properties of H-terminated diamond surface affected by NO2 gas, Appl. Phys. Lett. 96, 052101 (2010)
[1] Xin-Long Dong, Kun-Hua Zhang, Ming-Xiang Xu. First-principles study of electronic structure and magnetic properties of SrTi1−xMxO3 (M= Cr, Mn, Fe, Co, or Ni)[J]. Front. Phys. , 2018, 13(5): 137106-.
[2] Chen Yang, Ying Chen, Dan Liu, Jinfeng Wang, Cheng Chen, Jiemin Wang, Ye Fan, Shaoming Huang, Weiwei Lei. Vertically aligned γ-AlOOH nanosheets on Al foils as flexible and reusable substrates for NH3 adsorption[J]. Front. Phys. , 2018, 13(4): 138101-.
[3] Qi Pei, Xiao-Cha Wang, Ji-Jun Zou, Wen-Bo Mi. Tunable electronic structure and magnetic coupling in strained two-dimensional semiconductor MnPSe3[J]. Front. Phys. , 2018, 13(4): 137105-.
[4] Yan Wang (王研), Chun-Mei Hao (郝春梅), Hong-Mei Huang (黄红梅), Yan-Ling Li (李延龄). Elastic, dynamical, and electronic properties of LiHg and Li3Hg: First-principles study[J]. Front. Phys. , 2018, 13(2): 137102-.
[5] Xiao-Hong Li, Hong-Ling Cui, Rui-Zhou Zhang. Structural, optical, and thermal properties of MAX-phase Cr2AlB2[J]. Front. Phys. , 2018, 13(2): 136501-.
[6] Ze-Lian Wang,Wen-Hui Xie,Yong-Hong Zhao. Tunable band structure and effective mass of disordered chalcopyrite[J]. Front. Phys. , 2017, 12(1): 127103-.
[7] Bakhtiar Ul Haq, Rashid Ahmed, Galila Abdellatif, Amiruddin Shaari, Faheem K. Butt, Mohammed Benali Kanoun, Souraya Goumri-Said. Dominant ferromagnetic coupling over antiferromagnetic in Ni doped ZnO: First-principles calculations[J]. Front. Phys. , 2016, 11(1): 117101-.
[8] Qing-Xiao Zhou, Chao-Yang Wang, Zhi-Bing Fu, Yong-Jian Tang, Hong Zhang. Effects of various defects on the electronic properties of single-walled carbon nanotubes: A first principle study[J]. Front. Phys. , 2014, 9(2): 200-209.
[9] Xiao-Dong Li, Hong Zhang, Yong-Jian Tang, Chao-Yang Wang. Adsorption and separation of methane/hydrogen in octaphenylsilsesquioxane based covalently-linked organic-inorganic hybrid framework[J]. Front. Phys. , 2012, 7(4): 453-460.
[10] Zhen Chen, Rui-Juan Xiao, Chao Ma, Yuan-Bin Qin, Hong-Long Shi, Zhi-Wei Wang, Yuan-Jun Song, Zhen Wang, Huan-Fang Tian, Huai-Xin Yang, Jian-Qi Li. Electronic structure of YMn2O5 studied by EELS and first-principles calculations[J]. Front. Phys. , 2012, 7(4): 429-434.
[11] Wei-dong Sheng, Marek Korkusinski, Alev Devrim Gü?lü, Michal Zielinski, Pawel Potasz, Eugene S. Kadantsev, Oleksandr Voznyy, Pawel Hawrylak. Electronic and optical properties of semiconductor and graphene quantum dots[J]. Front. Phys. , 2012, 7(3): 328-352.
[12] Dai-xiang Mou, Lin Zhao, Xing-jiang Zhou. Structural, magnetic and electronic properties of the iron–chalcogenide AxFe2-ySe2 (A=K, Cs, Rb, and Tl, etc.) superconductors[J]. Front. Phys. , 2011, 6(4): 410-428.
[13] Zi-jing DING (丁子敬), Yang JIAO (焦扬), Sheng MENG (孟胜). Quantum simulation of molecular interaction and dynamics at surfaces[J]. Front. Phys. , 2011, 6(3): 294-308.
[14] Hong ZHANG, Xiao-dong LI, Yong-jian TANG. DFT study of dihydrogen interactions with lithium containing organic complexes C4H4-mLim and C5H5-mLim (m = 1, 2)[J]. Front. Phys. , 2011, 6(2): 231-235.
[15] Feng-jie MA(马锋杰), Zhong-yi LU(卢仲毅), Tao XIANG(向涛). Electronic structures of ternary iron arsenides A Fe 2 As 2 ( A = Ba, Ca, or Sr)[J]. Front. Phys. , 2010, 5(2): 150-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed