Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2016, Vol. 11 Issue (1) : 116805    https://doi.org/10.1007/s11467-015-0520-y
RESEARCH ARTICLE
A novel hanging bowl-shaped mask for the fabrication of vertical sidewall structures
Dongxue Chen1,2,Qian Liu1,*()
1. National Center for Nanoscience and Technology, Beijing 100190, China
2. University of Chinese Academy of Sciences, Beijing 100080, China
 Download: PDF(274 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Contact exposure is expected to occur in conventional lithography, and can be a source of process deviations (such as shrinking and distortion of templates) during reactive ion etching and inductively coupled plasma etching, as these deviations are induced by ion bombardment. This typically results in undesired sidewall effects, such as lower sidewall angles. Here we report a novel hanging bowlshaped lithography mask that can effectively minimize sidewall effects in lithography applications. As a test case, standard silicon carbide pillars with vertical sidewalls are fabricated using this mask. The mask could be used for fabrication of high-aspect-ratio structures with ultra-violet lithography.

Keywords UV lithography      hanging bowl-shaped mask      sidewall effects      ICP      SiC     
Fund: 
Corresponding Author(s): Qian Liu   
Online First Date: 18 November 2015    Issue Date: 01 February 2016
 Cite this article:   
Dongxue Chen,Qian Liu. A novel hanging bowl-shaped mask for the fabrication of vertical sidewall structures[J]. Front. Phys. , 2016, 11(1): 116805.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-015-0520-y
https://academic.hep.com.cn/fop/EN/Y2016/V11/I1/116805
1 P. spinelli, M. A. Verschuuren, and A. Polman, Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators, Nat. Commun. 3, 692 (2012)
https://doi.org/10.1038/ncomms1691
2 H. Im, K. C. Bantz, S. H. Lee, T. W. Johnson, C. L. Haynes, and S. H. Oh, Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing, Adv. Mater. 25(19), 2678 (2013)
https://doi.org/10.1002/adma.201204283
3 J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays, Nano Lett.9 (1), 279 (2009)
https://doi.org/10.1021/nl802886y
4 W. Karim, S. A. Tschupp, M. Oezaslan, T. J. Schmidt, J. Gobrecht, J. A. van Bokhoven and Y. Ekinci, Highresolution and large-area nanoparticle arrays using EUV interference lithography. Nanoscale 7(16), 7386 (2015)
https://doi.org/10.1039/C5NR00565E
5 H. J. Lee, C. H. Lee, N. T. Lian, M. C. Deng, T. H. Yang, K. C. Chen, and C. Y. Lu, Effects of BCl3 gas on physical damage and Al residues in oxide hard-mask-based Al etching, Semicond. Sci. Technol.22, 678 (2007)
https://doi.org/10.1088/0268-1242/22/6/016
6 R. Ding, Y. Yang, and R. Han, Microtrenching effect of SiC ICP etching in SF6/O2 plasma, J. Semicond.30 (1), 016001 (2009)
https://doi.org/10.1088/1674-4926/30/1/016001
7 J. Ning, Q. Gong, G. Sun, and Z. Liu, The ICP etching technology of 3C-SiC films, J. Phys.: Conf. Ser.34, 511 (2006)
https://doi.org/10.1088/1742-6596/34/1/084
8 R. J. Shul, G. B. McClellan, S. A. Casalnuovo, D. J. Rieger, S. J. Pearton, C. Constantine, C. Barratt, R. F. Karlicek Jr., C. Tran, and M. Schurman, Inductively coupled plasma etching of GaN, Appl. Phys. Lett. 69 (8), 1119 (1996)
https://doi.org/10.1063/1.117077
9 A. Rahman, A. Ashraf, H. Xin, X. Tong, P. Sutter, M. D. Eisaman, and C. T. Black, Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells, Nat. Commun.6, 5963 (2015)
https://doi.org/10.1038/ncomms6963
10 S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, Hybrid silicon nanocone–polymer solar cells, Nano Lett.12 (6), 2971 (2012)
https://doi.org/10.1021/nl300713x
11 J. H. Choi, L. Latu-Romain, E. Bano, F. Dhalluin, T. Chevolleau and T. Baron, Fabrication of SiC nanopillars by inductively coupled SF6/O2 plasma etching, J. Phys. D: Appl. Phys. 45, 235204 (2012)
https://doi.org/10.1088/0022-3727/45/23/235204
12 Y. Ou, V. Jokubavicius, P. Hens, M. Kaiser, P.Wellmann, R. Yakimova, M. Syväjärvi, and H. Ou, Broadband and omnidirectional light harvesting enhancement of fluorescent SiC, Opt. Exp. 20(7), 7575 (2012)
https://doi.org/10.1364/OE.20.007575
13 S. Osborne, M. Nanninga, H. Takahashi, E. Woster, C. Kanda, and J. Tibbe, Mask cleaning strategies—particle elimination with minimal surface damage, Proc. SPIE.5992, 59923G (2005)
https://doi.org/10.1117/12.632151
14 E. Hoshino, T. Ogawa, M. Takahashi, H. Hoko, H. Yamanashi, N. Hirano, and S. Okazaki, Damage control during dry etching of EUV mask (I): Control of surface roughness, Proc. SPIE. 3873, 19th Annual Symposium on Photomask Technology, 786 (1999)
15 Y. Tanaka, I. Nishiyama , T. Abe, S. Sasaki, N. Hayashi, Evaluation of multilayer damage in EUVL mask fabrication process, Proc. SPIE. 5567, 24th Annual BACUS Symposium on Photomask Technology,1377 (2004)
https://doi.org/10.1117/12.568984
16 M. Kureishi , R. Ohkubo, M. Hosoya, T. Shoki, N. Sakaya, H. Kobayashi, O. Nozawa, Y. Usui, and O. Nagarekawa, Development of low damage mask making process on EUV mask with thin CrN buffer layer, Proc. SPIE. 5751, Emerging Lithographic Technologies IX,158 (2005)
17 P. Y. Yan and G. Zhang, Method of protecting an EUV mask from damage and contamination, United States patent, US 08/995, 867 (1997)
18 R. G. Hsieh, C. C. Hung, and J. J. Shin, Charge effect and electrostatic damage prevention method on photo-mask, United States patent, US 10/187, 675 (2005)
19 A. Garetto, J. Oster, M. Waiblinger, K. Edinger, Challenging damage repair techniques for maximizing mask repair yield, Proc. SPIE. 7488, Photomask Technology 2009, 74880H (2009)
20 D. Nakamura, I. Gunjishima, S. Yamaguchi, T. Ito, A. Okamoto, H. Kondo, S. Onda, and K. Takatori, Ultrahighquality silicon carbide single crystals, Nature 430, 1009 (2004)
https://doi.org/10.1038/nature02810
21 Y. Liu and C. Xie, Large-area SiC membrane produced by plasma enhanced chemical vapor deposition at relatively high temperature, J. Vac. Sci. Technol. A 33, 05E114 (2015)
22 D. W. Feldman, James H. Parker, Jr., W. J. Choyke, and L. Patrick, Raman Scattering in 6H SiC, Phys. Rev. 170, 698 (1968)
https://doi.org/10.1103/PhysRev.170.698
23 L. Huang and Z. Zeng, Patterning graphene nanostripes in substrate-supported functionalized graphene: A promising route to integrated, robust, and superior transistors, Front. Phys. 7(3), 324 (2012)
https://doi.org/10.1007/s11467-011-0239-3
24 C. Xie, X. Zhu, H. Li, J. Niu, Y. Hua, and L. Shi, Fabrication of X-ray diffractive optical elements for laser fusion applications, Opt. Eng. 52(3), 033402 (2013)
https://doi.org/10.1117/1.OE.52.3.033402
[1] Shan Cheng, Zhen-Jun Xiao. The PQCD approach towards to next-to-leading order: A short review[J]. Front. Phys. , 2021, 16(2): 24201-.
[2] Long Tian, Shao-Ping Shi, Yu-Hang Tian, Ya-Jun Wang, Yao-Hui Zheng, Kun-Chi Peng. Resource reduction for simultaneous generation of two types of continuous variable nonclassical states[J]. Front. Phys. , 2021, 16(2): 21502-.
[3] Sen Jia, Xingyu Zhou, Chengping Shen. Experimental review of the ϒ(1S, 2S, 3S) physics at e+e colliders and the LHC[J]. Front. Phys. , 2020, 15(6): 64301-.
[4] Yan-Rong Zhang, Ze-Zheng Zhang, Jia-Qi Yuan, Ming Kang, Jing Chen. High-order exceptional points in non-Hermitian Moiré lattices[J]. Front. Phys. , 2019, 14(5): 53603-.
[5] Ce Wang, Hui Zhai. Machine learning of frustrated classical spin models (II): Kernel principal component analysis[J]. Front. Phys. , 2018, 13(5): 130507-.
[6] Gang Peng (彭刚), Xiaoyan Yu (于晓燕), Yan-Lan He (何焰兰), Gong-Yi Li (李公义), Yi-Xing Liu (刘一星), Xinfang Zhang (张鑫方), Xue-Ao Zhang (张学骜). Quantum confinement effect in β-SiC nanowires[J]. Front. Phys. , 2018, 13(4): 137802-.
[7] Cong Xiao. Semiclassical Boltzmann theory of spin Hall effects in giant Rashba systems[J]. Front. Phys. , 2018, 13(2): 137202-.
[8] Sheng-Qiang Li(李胜强), Jian-Ping Yin (印建平). A versatile electrostatic trap with open optical access[J]. Front. Phys. , 2018, 13(2): 133701-.
[9] Deng Wang, Xin-He Wang. Traversable braneworld wormholes supported by astrophysical observations[J]. Front. Phys. , 2018, 13(1): 139801-.
[10] Ting-Ting Chen,Bo Zheng,Yan Li,Xiong-Fei Jiang. New approaches in agent-based modeling of complex financial systems[J]. Front. Phys. , 2017, 12(6): 128905-.
[11] Chen Xin, Ji-Ping Huang. Recent progress in econophysics: Chaos, leverage, and business cycles as revealed by agent-based modeling and human experiments[J]. Front. Phys. , 2017, 12(6): 128910-.
[12] Zhi-Qiang Jiang,Yan-Hong Yang,Gang-Jin Wang,Wei-Xing Zhou. Joint multifractal analysis based on wavelet leaders[J]. Front. Phys. , 2017, 12(6): 128907-.
[13] Ruoshi Yuan, Ying Tang, Ping Ao. SDE decomposition and A-type stochastic interpretation in nonequilibrium processes[J]. Front. Phys. , 2017, 12(6): 120201-.
[14] Mo-Ran Jia,Zi-Liang Li,Chong Lv,Feng Wan,Bai-Song Xie. Pair production in strong SU(2) background fields[J]. Front. Phys. , 2017, 12(5): 121101-.
[15] Yupeng Li,Zhen Wang,Pengshan Li,Xiaojun Yang,Zhixuan Shen,Feng Sheng,Xiaodong Li,Yunhao Lu,Yi Zheng,Zhu-An Xu. Negative magnetoresistance in Weyl semimetals NbAs and NbP: Intrinsic chiral anomaly and extrinsic effects[J]. Front. Phys. , 2017, 12(3): 127205-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed