Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2016, Vol. 11 Issue (2) : 117804    https://doi.org/10.1007/s11467-015-0526-5
REVIEW ARTICLE
A polarizing situation: Taking an in-plane perspective for next-generation near-field studies
P. James Schuck1,*(),Wei Bao1,2,Nicholas J. Borys1
1. Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
2. Department of Materials Science and Engineering, University of California, Berkeley, CA 94720-1760, USA
 Download: PDF(588 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

By enabling the probing of light–matter interactions at the functionally relevant length scales of most materials, near-field optical imaging and spectroscopy accesses information that is unobtainable with other methods. The advent of apertureless techniques, which exploit the ultralocalized and enhanced near-fields created by sharp metallic tips or plasmonic nanoparticles, has resulted in rapid adoption of near-field approaches for studying novel materials and phenomena, with spatial resolution approaching sub-molecular levels. However, these approaches are generally limited by the dominant out-of-plane polarization response of apertureless tips, restricting the exploration and discovery of many material properties. This has led to recent design and fabrication breakthroughs in near-field tips engineered specifically for enhancing in-plane interactions with near-field light components. This mini-review provides a perspective on recent progress and emerging directions aimed at utilizing and controlling in-plane optical polarization, highlighting key application spaces where in-plane near-field tip responses have enabled recent advancements in the understanding and development of new nanostructured materials and devices.

Keywords near-field optical microscopy      nano-optics      TERS      plasmonics      optical antenna      2D materials     
Corresponding Author(s): P. James Schuck   
Issue Date: 29 April 2016
 Cite this article:   
P. James Schuck,Wei Bao,Nicholas J. Borys. A polarizing situation: Taking an in-plane perspective for next-generation near-field studies[J]. Front. Phys. , 2016, 11(2): 117804.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-015-0526-5
https://academic.hep.com.cn/fop/EN/Y2016/V11/I2/117804
1 L. Novotny and B. Hecht, Principles of Nano-Optics, Cambridge: Cambridge University Press, 2006
https://doi.org/10.1017/CBO9780511813535
2 S. Kawata, Y. Inouye, and P. Verma, Plasmonics for near-field nano-imaging and superlensing, Nat. Photonics 3(7), 388 (2009)
https://doi.org/10.1038/nphoton.2009.111
3 M. A. Paesler and P. J. Moyer, Near-Field Optics: Theory, Instrumentation and Applications, New York: Wiley, 1996
4 J. M. Atkin, S. Berweger, A. C. Jones, and M. B. Raschke, Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids, Adv. Phys. 61(6), 745 (2012)
https://doi.org/10.1080/00018732.2012.737982
5 M. Fleischer, Near-field scanning optical microscopy nanoprobes, Nanotechnology Reviews 1(4), 313 (2012)
https://doi.org/10.1515/ntrev-2012-0027
6 P. J. Schuck, A. Weber-Bargioni, P. D. Ashby, D. F. Ogletree, A. Schwartzberg, and S. Cabrini, Life beyond diffraction: Opening new routes to materials characterization with next-generation optical near-field approaches, Adv. Funct. Mater. 23(20), 2539 (2013)
https://doi.org/10.1002/adfm.201203432
7 N. Mauser and A. Hartschuh, Tip-enhanced near-field optical microscopy, Chem. Soc. Rev. 43(4), 1248 (2014)
https://doi.org/10.1039/C3CS60258C
8 A. V. Zayats and D. Richards(Eds.), Nano-Optics and Near-Field Optical Microscopy, Artech House, 2008
9 R. C. Dunn, Near-field scanning optical microscopy, Chem. Rev. 99(10), 2891 (1999)
https://doi.org/10.1021/cr980130e
10 M. I. Stockman, Nanoplasmonics: The physics behind the applications, Phys. Today 64(2), 39 (2011)
https://doi.org/10.1063/1.3554315
11 A. Hartschuh, Tip-enhanced near-field optical microscopy, Angew. Chem. Int. Ed. 47(43), 8178 (2008)
https://doi.org/10.1002/anie.200801605
12 B. S. Yeo, J. Stadler, T. Schmid, R. Zenobi, and W. H. Zhang, Tip-enhanced Raman spectroscopy – Its status, challenges and future directions, Chem. Phys. Lett. 472(1-3), 1 (2009)
https://doi.org/10.1016/j.cplett.2009.02.023
13 B. Pettinger, P. Schambach, C. J. Villagomez, and N. Scott, Tip-enhanced Raman spectroscopy: Near-fields acting on a few molecules, in: Annual Review of Physical Chemistry, M. A. Johnson and T. J. Martinez (Eds.), 2012, pp 379–399
14 K. Joulain, R. Carminati, J. P. Mulet, and J. J. Greffet, Definition and measurement of the local density of electromagnetic states close to an interface, Phys. Rev. B 68(24), 245405 (2003)
https://doi.org/10.1103/PhysRevB.68.245405
15 R. Beams, D. Smith, T. W. Johnson, S. H. Oh, L. Novotny, and A. N. Vamivakas, Nanoscale fluorescence lifetime imaging of an optical antenna with a single diamond NV center, Nano Lett. 13(8), 3807 (2013)
https://doi.org/10.1021/nl401791v
16 R. Carminati, A. Caze, D. Cao, F. Peragut, V. Krachmalnicoff, R. Pierrat, and Y. De Wilde, Electromagnetic density of states in complex plasmonic systems, Surf. Sci. Rep. 70(1), 1 (2015)
https://doi.org/10.1016/j.surfrep.2014.11.001
17 N. Rotenberg and L. Kuipers, Mapping nanoscale light fields, Nat. Photonics 8(12), 919 (2014)
https://doi.org/10.1038/nphoton.2014.285
18 M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps, Nano Lett. 10(9), 3524 (2010)
https://doi.org/10.1021/nl101693a
19 K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, Vector field microscopic imaging of light, Nat. Photonics 1(1), 53 (2007)
https://doi.org/10.1038/nphoton.2006.37
20 H. Gersen, L. Novotny, L. Kuipers, and N. F. van Hulst, On the concept of imaging nanoscale vector fields, Nat. Photonics 1(5), 242 (2007)
https://doi.org/10.1038/nphoton.2007.68a
21 M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th Ed., Cambridge: Cambridge University Press, 1999
https://doi.org/10.1017/CBO9781139644181
22 T. Setala, A. Shevchenko, M. Kaivola, and A. T. Friberg, Degree of polarization for optical near fields, Phys. Rev. E 66(1), 016615 (2002)
https://doi.org/10.1103/PhysRevE.66.016615
23 S. Patanè, E. Cefali, S. Spadaro, R. Gardelli, M. Albani, and M. Allegrini, Polarization-maintaining near-field optical probes, Journal of Microscopy 229(2), 377 (2008)
https://doi.org/10.1111/j.1365-2818.2008.01915.x
24 M. J. Fasolka, L. S. Goldner, J. Hwang, A. M. Urbas, P. Derege, T. Swager, and E. L. Thomas, Measuring local optical properties: Near-field polarimetry of photonic block copolymer morphology, Phys. Rev. Lett. 90(1), 016107, 1 (2003)
25 P. Anger, P. Bharadwaj, and L. Novotny, Enhancement and quenching of single-molecule fluorescence, Phys. Rev. Lett. 96(11), 113002 (2006)
https://doi.org/10.1103/PhysRevLett.96.113002
26 E. Betzig and R. J. Chichester, Single molecules observed by near-field scanning optical microscopy, Science 262(5138), 1422 (1993)
https://doi.org/10.1126/science.262.5138.1422
27 H. Eghlidi, K. G. Lee, X. W. Chen, S. Gotzinger, and V. Sandoghdar, Resolution and enhancement in nanoantenna-based fluorescence microscopy, Nano Lett. 9(12), 4007 (2009)
https://doi.org/10.1021/nl902183y
28 S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna, Phys. Rev. Lett. 97(1), 017402 (2006)
https://doi.org/10.1103/PhysRevLett.97.017402
29 P. Bharadwaj, P. Anger, and L. Novotny, Nanoplasmonic enhancement of single-molecule fluorescence, Nanotechnology 18(4), 044017 (2007)
https://doi.org/10.1088/0957-4484/18/4/044017
30 J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, Single quantum dot coupled to a scanning optical antenna: A tunable superemitter, Phys. Rev. Lett. 95(1), 017402 (2005)
https://doi.org/10.1103/PhysRevLett.95.017402
31 J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, Tip-enhanced fluorescence microscopy at 10 nanometer resolution, Phys. Rev. Lett. 93(18), 180801 (2004)
https://doi.org/10.1103/PhysRevLett.93.180801
32 A. Ghimire, E. Shafran, and J. M. Gerton, Using a sharp metal tip to control the polarization and direction of emission from a quantum dot, Sci. Rep. 4, 6456 (2014)
https://doi.org/10.1038/srep06456
33 T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence, Nano Lett. 7(1), 28 (2007)
https://doi.org/10.1021/nl061726h
34 J. A. Veerman, A. M. Otter, L. Kuipers, and N. F. van Hulst, High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling, Appl. Phys. Lett. 72(24), 3115 (1998)
https://doi.org/10.1063/1.121564
35 R. Eckel, V. Walhorn, C. Pelargus, J. Martini, J. Enderlein, T. Nann, D. Anselmetti, and R. Ros, Fluorescence-emission control of single CdSe nanocrystals using gold-modified AFM tips, Small 3(1), 44 (2007)
https://doi.org/10.1002/smll.200600130
36 E. Yoskovitz, D. Oron, I. Shweky, and U. Banin, Apertureless near-field distance-dependent lifetime imaging and spectroscopy of semiconductor nanocrystals, J. Phys. Chem. C 112(42), 16306 (2008)
https://doi.org/10.1021/jp8043253
37 V. V. Protasenko, M. Kuno, A. Gallagher, and D. J. Nesbitt, Fluorescence of single ZnS overcoated CdSe quantum dots studied by apertureless near-field scanning optical microscopy, Opt. Commun. 210(1-2), 11 (2002)
https://doi.org/10.1016/S0030-4018(02)01759-5
38 M. I. Stockman, D. J. Bergman, and T. Kobayashi, Coherent control of nanoscale localization of ultrafast optical excitation in nanosystems, Phys. Rev. B 69(5), 054202 (2004)
https://doi.org/10.1103/PhysRevB.69.054202
39 S. Berweger, C. C. Neacsu, Y. B. Mao, H. J. Zhou, S. S. Wong, and M. B. Raschke, Optical nanocrystallography with tip-enhanced phonon Raman spectroscopy, Nat. Nanotechnol. 4(8), 496 (2009)
https://doi.org/10.1038/nnano.2009.190
40 S. Berweger, J. M. Atkin, R. L. Olmon, and M. B. Raschke, Light on the tip of a needle: Plasmonic nanofocusing for spectroscopy on the nanoscale, J. Phys. Chem. Lett. 3(7), 945 (2012)
https://doi.org/10.1021/jz2016268
41 E. J. Sánchez, L. Novotny, and X. S. Xie, Near-field fluorescence microscopy based on two-photon excitation with metal tips, Phys. Rev. Lett. 82(20), 4014 (1999)
https://doi.org/10.1103/PhysRevLett.82.4014
42 T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging, Phys. Rev. Lett. 92(22), 220801 (2004)
https://doi.org/10.1103/PhysRevLett.92.220801
43 S. Palomba and L. Novotny, Near-field imaging with a localized nonlinear light source, Nano Lett. 9(11), 3801 (2009)
https://doi.org/10.1021/nl901986g
44 A. V. Zayats and V. Sandoghdar, Apertureless scanning near-field second-harmonic microscopy, Opt. Commun. 178(1-3), 245 (2000)
https://doi.org/10.1016/S0030-4018(00)00655-6
45 A. V. Zayats and V. Sandoghdar, Apertureless near-field optical microscopy via local second-harmonic generation, Journal of Microscopy 202(1), 94 (2001)
https://doi.org/10.1046/j.1365-2818.2001.00810.x
46 A.V. Zayats and I. I. Smolyaninov, Near-field second-harmonic generation: One contribution of 13 to a Theme “Nano-optics and near-field microscopy”, Royal Society of London Transactions Series A, 362(1817), 843 (2004)
47 C. C. Neacsu, B. B. van Aken, M. Fiebig, and M. B. Raschke, Second-harmonic near-field imaging of ferroelectric domain structure of YMnO3, Phys. Rev. B 79(10), 100107 (2009)
https://doi.org/10.1103/PhysRevB.79.100107
48 C. Neacsu, G. Steudle, and M. Raschke, Plasmonic light scattering from nanoscopic metal tips, Appl. Phys. B 80(3), 295 (2005)
https://doi.org/10.1007/s00340-005-1748-y
49 K. A. Meyer, K. C. Ng, Z. Gu, Z. Pan, W. B. Whitten, and R. W. Shaw, Combined apertureless near-field optical second-harmonic generation/atomic force microscopy imaging and nanoscale limit of detection, Appl. Spectrosc. 64(1), 1 (2010)
https://doi.org/10.1366/000370210790572070
50 S. I. Bozhevolnyi, K. Pedersen, T. Skettrup, X. S. Zhang, and M. Belmonte, Far- and near-field second-harmonic imaging of ferroelectric domain walls, Opt. Commun. 152(4-6), 221 (1998)
https://doi.org/10.1016/S0030-4018(98)00176-X
51 L. Mahieu-Williame, S. Gresillon, M. Cuniot-Ponsard, and C. Boccara, Second harmonic generation in the near field and far field: A sensitive tool to probe crystalline homogeneity, J. Appl. Phys. 101(8), 083111 (2007)
https://doi.org/10.1063/1.2719278
52 E. Betzig, P. L. Finn, and J. S. Weiner, Combined shear force and near-field scanning optical microscopy, Appl. Phys. Lett. 60(20), 2484 (1992)
https://doi.org/10.1063/1.106940
53 E. Betzig and J. K. Trautman, Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit, Science 257(5067), 189 (1992)
https://doi.org/10.1126/science.257.5067.189
54 T. J. Silva and S. Schultz, A scanning near-field optical microscope for the imaging of magnetic domains in reflection, Rev. Sci. Instrum. 67(3), 715 (1996)
https://doi.org/10.1063/1.1146658
55 F. Matthes, H. Bruckl, and G. Reiss, Near-field magneto-optical microscopy in collection and illumination mode, Ultramicroscopy 71(1-4), 243 (1998)
https://doi.org/10.1016/S0304-3991(97)00094-6
56 P. Bertrand, L. Conin, C. Hermann, G. Lampel, J. Peretti, and V. I. Safarov, Imaging of magnetic domains with scanning tunneling optical microscopy, J. Appl. Phys. 83(11), 6834 (1998)
https://doi.org/10.1063/1.367646
57 C. Durkan, I. V. Shvets, and J. C. Lodder, Observation of magnetic domains using a reflection-mode scanning near-field optical microscope, Appl. Phys. Lett. 70(10), 1323 (1997)
https://doi.org/10.1063/1.118524
58 S. Takahashi, W. Dickson, R. Pollard, and A. Zayats, Near-field magneto-optical analysis in reflection mode SNOM, Ultramicroscopy 100(3-4), 443 (2004)
https://doi.org/10.1016/j.ultramic.2004.01.020
59 P. Fumagalli, A. Rosenberger, G. Eggers, A. Munnemann, N. Held, and G. Guntherodt, Quantitative determination of the local Kerr rotation by scanning near-field magneto-optic microscopy, Appl. Phys. Lett. 72(22), 2803 (1998)
https://doi.org/10.1063/1.121463
60 S. Grésillon, H. Cory, J. C. Rivoal, and A. C. Boccara, Transmission-mode apertureless near-field microscope: Optical and magneto-optical studies, J. Opt. A 1(2), 178 (1999)
https://doi.org/10.1088/1464-4258/1/2/011
61 J. N. Walford, J. A. Porto, R. Carminati, and J. J. Greffet, Theory of near-field magnetooptical imaging, J. Opt. Soc. Am. A 19(3), 572 (2002)
https://doi.org/10.1364/JOSAA.19.000572
62 P. Fumagalli, Scanning near-field magneto-optic microscopy, in: Modern Techniques for Characterizing Magnetic Materials, edited by Y. Zhu, 2005, Dordrecht: Springer, pp 455–515
63 S. Sugano and N. Kojima(Eds.), Magneto-Optics (Springer Series in Solid-State Sciences), Berlin: Springer, 2000
64 W. Dickson, S. Takahashi, R. Pollard, R. Atkinson, and A. V. Zayats, Near-field imaging of ultrathin magnetic films with in-plane magnetization, Journal of Microscopy 209(3), 194 (2003)
https://doi.org/10.1046/j.1365-2818.2003.01112.x
65 A. Kapitulnik, J. S. Dodge, and M. M. Fejer, High-resolution magneto-optic measurements with a Sagnac interferometer, J. Appl. Phys. 75(10), 6872 (1994)
https://doi.org/10.1063/1.356814
66 B. L. Petersen, A. Bauer, G. Meyer, T. Crecelius, and G. Kaindl, Kerr-rotation imaging in scanning near-field optical microscopy using a modified Sagnac interferometer, Appl. Phys. Lett. 73(4), 538 (1998)
https://doi.org/10.1063/1.121925
67 I. I. Smolyaninov, A. V. Zayats, and C. C. Davis, Near-field second-harmonic imaging of ferromagnetic and ferroelectric materials, Opt. Lett. 22(21), 1592 (1997)
https://doi.org/10.1364/OL.22.001592
68 D. Wegner, U. Conrad, J. Gudde, G. Meyer, T. Crecelius, and A. Bauer, In-plane magnetization of garnet films imaged by proximal probe nonlinear magneto-optical microscopy, J. Appl. Phys. 88(4), 2166 (2000)
https://doi.org/10.1063/1.1302734
69 W. Dickson, S. Takahashi, C. M. I. Boronat, R. M. Bowman, J. M. Gregg, and A. V. Zayats, Near-field second-harmonic imaging of thin ferroelectric films, Phys. Rev. B 72(9), 094110 (2005)
https://doi.org/10.1103/PhysRevB.72.094110
70 J. Stadler, T. Schmid, and R. Zenobi, Developments in and practical guidelines for tip-enhanced Raman spectroscopy, Nanoscale 4(6), 1856 (2012)
https://doi.org/10.1039/C1NR11143D
71 T. Mino, Y. Saito, and P. Verma, Quantitative analysis of polarization-controlled tip-enhanced Raman imaging through the evaluation of the tip dipole, ACS Nano 8(10), 10187 (2014)
https://doi.org/10.1021/nn5031803
72 Y. Saito and P. Verma, Polarization-controlled Raman microscopy and nanoscopy, J. Phys. Chem. Lett. 3(10), 1295 (2012)
https://doi.org/10.1021/jz300213t
73 M. D. Sonntag, E. A. Pozzi, N. Jiang, M. C. Hersam, and R. P. Van Duyne, Recent advances in tip-enhanced Raman spectroscopy, J. Phys. Chem. Lett. 5(18), 3125 (2014)
https://doi.org/10.1021/jz5015746
74 P. Verma, T. Ichimura, T. Yano, Y. Saito, and S. Kawata, Nano-imaging through tip-enhanced Raman spectroscopy: Stepping beyond the classical limits, Laser Photonics Rev. 4(4), 548 (2010)
https://doi.org/10.1002/lpor.200910039
75 T. Mino, Y. Saito, H. Yoshida, S. Kawata, and P. Verma, Molecular orientation analysis of organic thin films by z-polarization Raman microscope, J. Raman Spectrosc. 43(12), 2029 (2012)
https://doi.org/10.1002/jrs.4118
76 H. A. Bethe, Theory of diffraction by small holes, Phys. Rev. 66(7-8), 163 (1944)
https://doi.org/10.1103/PhysRev.66.163
77 L. Novotny and C. Hafner, Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function, Phys. Rev. E 50(5), 4094 (1994)
https://doi.org/10.1103/PhysRevE.50.4094
78 R. D. Grober, T. Rutherford, and T. D. Harris, Modal approximation for the electromagnetic field of a near-field optical probe, Appl. Opt. 35(19), 3488 (1996)
https://doi.org/10.1364/AO.35.003488
79 Th. Huser, L. Novotny, Th. Lacoste, R. Eckert, and H. Heinzelmann, Observation and analysis of near-field optical diffraction, J. Opt. Soc. Am. A 16(1), 141 (1999)
https://doi.org/10.1364/JOSAA.16.000141
80 T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, A single gold particle as a probe for apertureless scanning near-field optical microscopy, Journal of Microscopy-Oxford 202(1), 72 (2001)
https://doi.org/10.1046/j.1365-2818.2001.00817.x
81 M. I. Stockman, Nanofocusing of optical energy in tapered plasmonic waveguides, Phys. Rev. Lett. 93(13), 137404 (2004)
https://doi.org/10.1103/PhysRevLett.93.137404
82 F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, Infrared-spectroscopic nanoimaging with a thermal source, Nat. Mater. 10(5), 352 (2011)
https://doi.org/10.1038/nmat3006
83 J. Stadler, T. Schmid, and R. Zenobi, Nanoscale chemical imaging using top-illumination tip-enhanced Raman spectroscopy, Nano Lett. 10(11), 4514 (2010)
https://doi.org/10.1021/nl102423m
84 A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes, Nano Lett. 11(3), 1201 (2011)
https://doi.org/10.1021/nl104163m
85 P. G. Gucciardi, M. Lopes, R. Déturche, C. Julien, D. Barchiesi, and M. L. de la Chapelle, Light depolarization induced by metallic tips in apertureless near-field optical microscopy and tip-enhanced Raman spectroscopy, Nanotechnology 19(21), 215702 (2008)
https://doi.org/10.1088/0957-4484/19/21/215702
86 R. Ossikovski, Q. Nguyen, and G. Picardi, Simple model for the polarization effects in tip-enhanced Raman spectroscopy, Phys. Rev. B 75(4), 045412 (2007)
https://doi.org/10.1103/PhysRevB.75.045412
87 T. Schmid, L. Opilik, C. Blum, and R. Zenobi, Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: A critical review, Angew. Chem. Int. Ed. 52(23), 5940 (2013)
https://doi.org/10.1002/anie.201203849
88 T. Schmid, B. S. Yeo, G. Leong, J. Stadler, and R. Zenobi, Performing tip-enhanced Raman spectroscopy in liquids, J. Raman Spectrosc. 40(10), 1392 (2009)
https://doi.org/10.1002/jrs.2387
89 A. Tarun, N. Hayazawa, and S. Kawata, Tip-enhanced Raman spectroscopy for nanoscale strain characterization, Anal. Bioanal. Chem. 394(7), 1775 (2009)
https://doi.org/10.1007/s00216-009-2771-3
90 Y. Ogawa, T. Toizumi, F. Minami, and A. V. Baranov, Nanometer-scale mapping of the strain and Ge content of Ge/Si quantum dots using enhanced Raman scattering by the tip of an atomic force microscope, Phys. Rev. B 83(8), 081302 (2011)
https://doi.org/10.1103/PhysRevB.83.081302
91 S. Nakashima, T. Mitani, M. Ninomiya, and K. Matsumoto, Raman investigation of strain in Si/SiGe heterostructures: Precise determination of the strain-shift coefficient of Si bands, J. Appl. Phys. 99(5), 053512 (2006)
https://doi.org/10.1063/1.2178396
92 R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, Nanoscale chemical analysis by tip-enhanced Raman spectroscopy, Chem. Phys. Lett. 318(1-3), 131 (2000)
https://doi.org/10.1016/S0009-2614(99)01451-7
93 Y. D. Suh, R. M. Soeckle, V. Deckert, and R. Zenobi, Abstracts of Papers of the American Chemical Society 221, U91 (2001)
94 E. Poliani, M. R. Wagner, J. S. Reparaz, M. Mandl, M. Strassburg, X. Kong, A. Trampert, C. M. Sotomayor Torres, A. Hoffmann, and J. Maultzsch, Nanoscale imaging of InN segregation and polymorphism in single vertically aligned InGaN/GaN multi quantum well nanorods by tip-enhanced Raman scattering, Nano Lett. 13(7), 3205 (2013)
https://doi.org/10.1021/nl401277y
95 S. Berweger, J. M. Atkin, R. L. Olmon, and M. B. Raschke, Adiabatic tip-plasmon focusing for nano-Raman spectroscopy, J. Phys. Chem. Lett. 1(24), 3427 (2010)
https://doi.org/10.1021/jz101289z
96 N. Hayazawa, M. Motohashi, Y. Saito, H. Ishitobi, A. Ono, T. Ichimura, P. Verma, and S. Kawata, Visualization of localized strain of a crystalline thin layer at the nanoscale by tip-enhanced Raman spectroscopy and microscopy, J. Raman Spectrosc. 38(6), 684 (2007)
https://doi.org/10.1002/jrs.1728
97 C. Chen, N. Hayazawa, and S. Kawata, A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient, Nat. Commun. 5, 3312 (2014)
https://doi.org/10.1038/ncomms4312
98 T. Yano, P. Verma, Y. Saito, T. Ichimura, and S. Kawata, Pressure-assisted tip-enhanced Raman imaging at a resolution of a few nanometres, Nat. Photonics 3(8), 473 (2009)
https://doi.org/10.1038/nphoton.2009.74
99 R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, Chemical mapping of a single molecule by plasmon-enhanced Raman scattering, Nature 498(7452), 82 (2013)
https://doi.org/10.1038/nature12151
100 T. X. Huang, S. C. Huang, M. H. Li, Z. C. Zeng, X. Wang, and B. Ren, Tip-enhanced Raman spectroscopy: Tip-related issues, Anal. Bioanal. Chem. 407(27), 8177 (2015)
https://doi.org/10.1007/s00216-015-8968-8
101 X. Zheng, C. Zong, M. Xu, X. Wang, and B. Ren, Raman imaging from microscopy to nanoscopy, and to macroscopy, Small 11(28), 3395 (2015)
https://doi.org/10.1002/smll.201403804
102 R. Beams, L. G. Cancado, S. H. Oh, A. Jorio, and L. Novotny, Spatial coherence in near-field Raman scattering, Phys. Rev. Lett. 113(18), 186101 (2014)
https://doi.org/10.1103/PhysRevLett.113.186101
103 F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons, Nat. Nanotechnol. 5(1), 67 (2010)
https://doi.org/10.1038/nnano.2009.348
104 A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, High-resolution near-field Raman microscopy of single-walled carbon nanotubes, Phys. Rev. Lett. 90(9), 095503 (2003)
https://doi.org/10.1103/PhysRevLett.90.095503
105 M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution, Nano Lett. 6(7), 1307 (2006)
https://doi.org/10.1021/nl0610836
106 F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, and R. Hillenbrand, Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution, Nano Lett. 12(8), 3973 (2012)
https://doi.org/10.1021/nl301159v
107 A. C. Jones and M. B. Raschke, Thermal infrared near-field spectroscopy, Nano Lett. 12(3), 1475 (2012)
https://doi.org/10.1021/nl204201g
108 I. Amenabar, S. Poly, W. Nuansing, E. H. Hubrich, A. A. Govyadinov, F. Huth, R. Krutokhvostov, L. Zhang, M. Knez, J. Heberle, A. M. Bittner, and R. Hillenbrand, Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy, Nat. Commun. 4, 2890 (2013)
109 H. A. Bechtel, E. A. Muller, R. L. Olmon, M. C. Martin, and M. B. Raschke, Ultrabroadband infrared nanospectroscopic imaging, Proc. Natl. Acad. Sci. USA 111(20), 7191 (2014)
https://doi.org/10.1073/pnas.1400502111
110 S. Mastel, A. A. Govyadinov, T. V. A. G. de Oliveira, I. Amenabar, and R. Hillenbrand, Nanoscale-resolved chemical identification of thin organic films using infrared near-field spectroscopy and standard Fourier transform infrared references, Appl. Phys. Lett. 106(2), 023113 (2015)
https://doi.org/10.1063/1.4905507
111 B. Pollard, E. A. Muller, K. Hinrichs, and M. B. Raschke, Vibrational nano-spectroscopic imaging correlating structure with intermolecular coupling and dynamics, Nat. Commun. 5, 3587 (2014)
https://doi.org/10.1038/ncomms4587
112 C. Höppener and L. Novotny, Exploiting the light–metal interaction for biomolecular sensing and imaging, Q. Rev. Biophys. 45(02), 209 (2012)
https://doi.org/10.1017/S0033583512000042
113 B. D. Mangum, C. Mu, and J. M. Gerton, Resolving single fluorophores within dense ensembles: contrast limits of tip-enhanced fluorescence microscopy, Opt. Express 16(9), 6183 (2008)
https://doi.org/10.1364/OE.16.006183
114 B. D. Mangum, E. Shafran, C. Mu, and J. M. Gerton, Three-dimensional mapping of near-field interactions via single-photon tomography, Nano Lett. 9(10), 3440 (2009)
https://doi.org/10.1021/nl901613h
115 L. Neumann, Y. J. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, Extraordinary optical transmission brightens near-field fiber probe, Nano Lett. 11(2), 355 (2011)
https://doi.org/10.1021/nl102657m
116 M. A. Bopp, A. J. Meixner, G. Tarrach, I. Zschokke-Gränacher, and L. Novotny, Direct imaging single molecule diffusion in a solid polymer host, Chem. Phys. Lett. 263(6), 721 (1996)
https://doi.org/10.1016/S0009-2614(96)01325-5
117 T. W. Johnson, Z. J. Lapin, R. Beams, N. C. Lindquist, S. G. Rodrigo, L. Novotny, and S. H. Oh, Highly reproducible near-field optical imaging with sub-20-nm resolution based on template-stripped gold pyramids, ACS Nano 6(10), 9168 (2012)
https://doi.org/10.1021/nn303496g
118 C. C. Neacsu, G. A. Reider, and M. B. Raschke, Second-harmonic generation from nanoscopic metal tips: Symmetry selection rules for single asymmetric nanostructures, Phys. Rev. B 71(20), 201402 (2005)
https://doi.org/10.1103/PhysRevB.71.201402
119 A. L. Demming, F. Festy, and D. Richards, Plasmon resonances on metal tips: Understanding tip-enhanced Raman scattering, J. Chem. Phys. 122(18), 184716 (2005)
https://doi.org/10.1063/1.1896356
120 D. Mehtani, N. Lee, R. D. Hartschuh, A. Kisliuk, M. D. Foster, A. P. Sokolov, and J. F. Maguire, Nano-Raman spectroscopy with side-illumination optics, J. Raman Spectrosc. 36(11), 1068 (2005)
https://doi.org/10.1002/jrs.1409
121 J. A. Veerman, M. F. Garcia-Parajo, L. Kuipers, and N. F. Van Hulst, Single molecule mapping of the optical field distribution of probes for near-field microscopy, Journal of Microscopy 194(2-3), 477 (1999)
https://doi.org/10.1046/j.1365-2818.1999.00520.x
122 B. Sick, B. Hecht, U. P. Wild, and L. Novotny, Probing confined fields with single molecules and vice versa, Journal of Microscopy 202(2), 365 (2001)
https://doi.org/10.1046/j.1365-2818.2001.00795.x
123 K. G. Lee, H. W. Kihm, K. J. Ahn, J. S. Ahn, Y. D. Suh, C. Lienau, and D. S. Kim, Vector field mapping of local polarization using gold nanoparticle functionalized tips: Independence of the tip shape, Opt. Express 15(23), 14993 (2007)
https://doi.org/10.1364/OE.15.014993
124 C. Huang, A. Bouhelier, G. Colas des Francs, A. Bruyant, A. Guenot, E. Finot, J.C. Weeber, and A. Dereux, Gain, detuning, and radiation patterns of nanoparticle optical antennas, Phys. Rev. B 78(15), 155407 (2008)
https://doi.org/10.1103/PhysRevB.78.155407
125 M. A. Lieb, J. M. Zavislan, and L. Novotny, Single-molecule orientations determined by direct emission pattern imaging, J. Opt. Soc. Am. B 21(6), 1210 (2004)
https://doi.org/10.1364/JOSAB.21.001210
126 T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, Optical antennas direct single-molecule emission, Nat. Photonics 2(4), 234 (2008)
https://doi.org/10.1038/nphoton.2008.32
127 S. Kuhn, G. Mori, M. Agio, and V. Sandoghdar, Modification of single molecule fluorescence close to a nanostructure: Radiation pattern, spontaneous emission and quenching, Mol. Phys. 106(7), 893 (2008)
https://doi.org/10.1080/00268970802002510
128 M. Böhmler, N. Hartmann, C. Georgi, F. Hennrich, A. A. Green, M. C. Hersam, and A. Hartschuh, Enhancing and redirecting carbon nanotube photoluminescence by an optical antenna, Opt. Express 18(16), 16443 (2010)
https://doi.org/10.1364/OE.18.016443
129 T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, Quantifying the magnetic nature of light emission, Nat. Commun. 3, 979 (2012)
https://doi.org/10.1038/ncomms1984
130 A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, Unidirectional emission of a quantum dot coupled to a nanoantenna, Science 329(5994), 930 (2010)
https://doi.org/10.1126/science.1191922
131 M. Terrones, Science and technology of the twenty-first century: Synthesis, properties, and applications of carbon nanotubes, Annu. Rev. Mater. Res. 33(1), 419 (2003)
https://doi.org/10.1146/annurev.matsci.33.012802.100255
132 M. S. Dresselhaus, A. Jorio, and R. Saito, Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy, Ann. Rev. Condens. Matter Phys. 1, 89 (2010)
https://doi.org/10.1146/annurev-conmatphys-070909-103919
133 X. Zhang, W. Zhang, L. Liu, and Z. X. Shen, Surface-enhanced Raman of Z-vibration mode in single-walled and multi-walled carbon nanotube, Chem. Phys. Lett. 372(3-4), 497 (2003)
https://doi.org/10.1016/S0009-2614(03)00412-3
134 M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Raman spectroscopy of carbon nanotubes, Phys. Rep. 409(2), 47 (2005)
https://doi.org/10.1016/j.physrep.2004.10.006
135 M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Raman spectroscopy of carbon nanotubes in 1997 and 2007, J. Phys. Chem. C 111(48), 17887 (2007)
https://doi.org/10.1021/jp071378n
136 C. Fantini, A. Jorio, M. Souza, M. S. Strano, M. S. Dresselhaus, and M. A. Pimenta, Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: Environment and temperature effects, Phys. Rev. Lett. 93(14), 147406 (2004)
https://doi.org/10.1103/PhysRevLett.93.147406
137 C. Fantini, A. Jorio, M. Souza, R. Saito, G. G. Samsonidze, M. S. Dresselhaus, and M. A. Pimenta, Steplike dispersion of the intermediate-frequency Raman modes in semiconducting and metallic carbon nanotubes, Phys. Rev. B 72(8), 085446 (2005)
https://doi.org/10.1103/PhysRevB.72.085446
138 R. Saito, T. Takeya, T. Kimura, G. Dresselhaus, and M. S. Dresselhaus, Finite-size effect on the Raman spectra of carbon nanotubes, Phys. Rev. B 59(3), 2388 (1999)
https://doi.org/10.1103/PhysRevB.59.2388
139 K. Sbai, A. Rahmani, H. Chadli, and J. L. Sauvajol, Finite-size effect on the Raman-active modes of double-walled carbon nanotubes, J. Phys.: Condens. Matter 20(1), 015204 (2008)
https://doi.org/10.1088/0953-8984/20/01/015204
140 M. Mitra, and S. Gopalakrishnan, Vibrational characteristics of single-walled carbon-nanotube: Time and frequency domain analysis, J. Appl. Phys. 101(11), 114320 (2007)
https://doi.org/10.1063/1.2734960
141 G. Picardi, M. Chaigneau, and R. Ossikovski, High resolution probing of multi wall carbon nanotubes by Tip Enhanced Raman Spectroscopy in gap-mode, Chem. Phys. Lett. 469(1-3), 161 (2009)
https://doi.org/10.1016/j.cplett.2008.12.088
142 I. O. Maciel, N. Anderson, M. A. Pimenta, A. Hartschuh, H. H. Qian, M. Terrones, H. Terrones, J. Campos-Delgado, A. M. Rao, L. Novotny, and A. Jorio, Electron and phonon renormalization near charged defects in carbon nanotubes, Nat. Mater. 7(11), 878 (2008)
https://doi.org/10.1038/nmat2296
143 N. Anderson, A. Hartschuh, and L. Novotny, Chirality changes in carbon nanotubes studied with near-field raman spectroscopy, Nano Lett. 7(3), 577 (2007)
https://doi.org/10.1021/nl0622496
144 Y. Saito, P. Verma, K. Masui, Y. Inouye, and S. Kawata, Nano-scale analysis of graphene layers by tip-enhanced near-field Raman spectroscopy, J. Raman Spectrosc. 40(10), 1434 (2009)
https://doi.org/10.1002/jrs.2366
145 R. H. Rickman and P. R. Dunstan, Enhancement of lattice defect signatures in graphene and ultrathin graphite using tip-enhanced Raman spectroscopy, J. Raman Spectrosc. 45(1), 15 (2014)
https://doi.org/10.1002/jrs.4416
146 R. Beams, L. G. Cancado, A. Jorio, A. N. Vamivakas, and L. Novotny, Tip-enhanced Raman mapping of local strain in graphene, Nanotechnology 26(17), 175702 (2015)
https://doi.org/10.1088/0957-4484/26/17/175702
147 A. Shiotari, T. Kumagai, and M. Wolf, Tip-enhanced Raman spectroscopy of graphene nanoribbons on Au(111), J. Phys. Chem. C 118(22), 11806 (2014)
https://doi.org/10.1021/jp502965r
148 Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, Gate-tuning of graphene plasmons revealed by infrared nano-imaging, Nature 487(7405), 82 (2012)
https://doi.org/10.1038/nature11253
149 J. N. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, Optical nano-imaging of gate-tunable graphene plasmons, Nature 487(7405), 77 (2012)
https://doi.org/10.1038/nature11254
150 P. Alonso-Gonzalez, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Velez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns, Science 344(6190), 1369 (2014)
https://doi.org/10.1126/science.1253202
151 A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, Highly confined low-loss plasmons in graphene–boron nitride heterostructures, Nat. Mater. 14(4), 421 (2015)
https://doi.org/10.1038/nmat4169
152 Z. Shi, X. Hong, H. A. Bechtel, B. Zeng, M. C. Martin, K. Watanabe, T. Taniguchi, Y. R. Shen, and F. Wang, Observation of a Luttinger-liquid plasmon in metallic single-walled carbon nanotubes, Nat. Photonics 9(8), 515 (2015)
https://doi.org/10.1038/nphoton.2015.123
153 M. Wagner, Z. Fei, A. S. McLeod, A. S. Rodin, W. Bao, E. G. Iwinski, Z. Zhao, M. Goldflam, M. Liu, G. Dominguez, M. Thiemens, M. M. Fogler, A. H. Castro Neto, C. N. Lau, S. Amarie, F. Keilmann, and D. N. Basov, Ultrafast and nanoscale plasmonic phenomena in exfoliated graphene revealed by infrared pump–probe nanoscopy, Nano Lett. 14(2), 894 (2014)
https://doi.org/10.1021/nl4042577
154 D. N. Basov, M. M. Fogler, A. Lanzara, F. Wang, and Y. Zhang, Colloquium: Graphene spectroscopy, Rev. Mod. Phys. 86(3), 959 (2014)
https://doi.org/10.1103/RevModPhys.86.959
155 N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S. H. Oh, Engineering metallic nanostructures for plasmonics and nanophotonics, Rep. Prog. Phys. 75(3), 036501 (2012)
https://doi.org/10.1088/0034-4885/75/3/036501
156 M. Fleischer, A. Weber-Bargioni, M. V. P. Altoe, A. M. Schwartzberg, P. J. Schuck, S. Cabrini, and D. P. Kern, Gold nanocone near-field scanning optical microscopy probes, ACS Nano 5(4), 2570 (2011)
https://doi.org/10.1021/nn102199u
157 P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Resonant optical antennas, Science 308(5728), 1607 (2005)
https://doi.org/10.1126/science.1111886
158 P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, Improving the mismatch between light and nanoscale objects with gold Bowtie nanoantennas, Phys. Rev. Lett. 94(1), 017402 (2005)
https://doi.org/10.1103/PhysRevLett.94.017402
159 D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, Gap-dependent optical coupling of single “Bowtie” nanoantennas resonant in the visible, Nano Lett. 4(5), 957 (2004)
https://doi.org/10.1021/nl049951r
160 P. Biagioni, J. S. Huang, and B. Hecht, Nanoantennas for visible and infrared radiation, Rep. Prog. Phys. 75(2), 024402 (2012)
https://doi.org/10.1088/0034-4885/75/2/024402
161 J. N. Farahani, H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy, Nanotechnology 18(12), 125506 (2007)
https://doi.org/10.1088/0957-4484/18/12/125506
162 A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck, and S. Cabrini, Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography,Nanotechnology 21(6), 065306 (2010)
https://doi.org/10.1088/0957-4484/21/6/065306
163 M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography, Nano Lett. 13(6), 2687 (2013)
https://doi.org/10.1021/nl400844a
164 B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol. 6(3), 147 (2011)
https://doi.org/10.1038/nnano.2010.279
165 Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)
https://doi.org/10.1038/nnano.2012.193
166 Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, Single-layer MoS2 phototransistors, ACS Nano 6(1), 74 (2012)
https://doi.org/10.1021/nn2024557
167 J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions, Nat. Nanotechnol. 9(4), 268 (2014)
https://doi.org/10.1038/nnano.2014.26
168 W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T. F. Heinz, J. Hone, and Z. L. Wang, Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics, Nature 514(7523), 470 (2014)
https://doi.org/10.1038/nature13792
169 B. W. H. Baugher, H. O. H. Churchill, Y. Yang, and P. Jarillo-Herrero, Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide, Nat. Nanotechnol. 9(4), 262 (2014)
https://doi.org/10.1038/nnano.2014.25
170 F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, Photodetectors based on graphene, other two-dimensional materials and hybrid systems, Nat. Nanotechnol. 9(10), 780 (2014)
https://doi.org/10.1038/nnano.2014.215
171 G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, Electronics based on two-dimensional materials, Nat. Nanotechnol. 9(10), 768 (2014)
https://doi.org/10.1038/nnano.2014.207
172 F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, Two-dimensional material nanophotonics, Nat. Photonics 8(12), 899 (2014)
https://doi.org/10.1038/nphoton.2014.271
173 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)
https://doi.org/10.1038/nature04233
174 Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)
https://doi.org/10.1038/nature04235
175 K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)
https://doi.org/10.1103/PhysRevLett.105.136805
176 A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, Emerging photoluminescence in monolayer MoS2, Nano Lett. 10(4), 1271 (2010)
https://doi.org/10.1021/nl903868w
177 A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2, Phys. Rev. Lett. 113(7), 076802 (2014)
https://doi.org/10.1103/PhysRevLett.113.076802
178 Z. Ye, T. Cao, K. O'Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, and X. Zhang, Probing excitonic dark states in single-layer tungsten disulphide, Nature 513(7517), 214 (2014)
https://doi.org/10.1038/nature13734
179 X. Xu, W. Yao, D. Xiao, and T. F. Heinz, Spin and pseudospins in layered transition metal dichalcogenides, Nat. Phys. 10(5), 343 (2014)
https://doi.org/10.1038/nphys2942
180 A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature 499(7459), 419 (2013)
https://doi.org/10.1038/nature12385
181 S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutierrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano 7(4), 2898 (2013)
https://doi.org/10.1021/nn400280c
182 K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, Tightly bound trions in monolayer MoS2, Nat. Mater. 12(3), 207 (2013)
https://doi.org/10.1038/nmat3505
183 C. Zhang, A. Johnson, C. L. Hsu, L. J. Li, and C. K. Shih, Direct imaging of band profile in single layer MoS2 on graphite: Quasiparticle energy gap, metallic edge states, and edge band bending, Nano Lett. 14(5), 2443 (2014)
https://doi.org/10.1021/nl501133c
184 M. M. Ugeda, A. J. Bradley, S. F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S. K. Mo, Z. Hussain, Z. X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor, Nat. Mater. 13(12), 1091 (2014)
https://doi.org/10.1038/nmat4061
185 W. Zhu, T. Low, Y.H. Lee, H. Wang, D. B. Farmer, J. Kong, F. Xia, and P. Avouris, Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition, Nat. Commun. 5, 3087 (2014)
https://doi.org/10.1038/ncomms4087
186 J. A. Schuller, S. Karaveli, T. Schiros, K. He, S. Yang, I. Kymissis, J. Shan, and R. Zia, Orientation of luminescent excitons in layered nanomaterials, Nat. Nanotechnol. 8(4), 271 (2013)
https://doi.org/10.1038/nnano.2013.20
187 D. F. Ogletree, P. J. Schuck, A. F. Weber-Bargioni, N. J. Borys, S. Aloni, W. Bao, S. Barja, J. Lee, M. Melli, K. Munechika, S. Whitelam, and S. Wickenburg, Revealing optical properties of reduced-dimensionality materials at relevant length scales, Adv. Mater. 27(38), 5693 (2015)
https://doi.org/10.1002/adma.201500930
188 Y. Abate, S. Gamage, L. Zhen, S. B. Cronin, H. Wang, V. Babicheva, M. H. Javani, and M. I. Stockman, Nanoscopy reveals metallic black phosphorus, arXiv: 1506.05431
189 Y. Lee, S. Park, H. Kim, G. H. Han, Y. H. Lee, and J. Kim, Characterization of the structural defects in CVD-grown monolayered MoS2 using near-field photoluminescence imaging, Nanoscale 7(28), 11909 (2015)
https://doi.org/10.1039/C5NR02897C
190 Y. Kang, S. Najmaei, Z. Liu, Y. Bao, Y. Wang, X. Zhu, N. J. Halas, P. Nordlander, P. M. Ajayan, J. Lou, and Z. Fang, Plasmonic hot electron induced structural phase transition in a MoS2 monolayer, Adv. Mater. 26(37), 6467 (2014)
https://doi.org/10.1002/adma.201401802
191 W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging, Science 338(6112), 1317 (2012)
https://doi.org/10.1126/science.1227977
192 W. Bao, M. Staffaroni, J. Bokor, M. B. Salmeron, E. Yablonovitch, S. Cabrini, A. Weber-Bargioni, and P. J. Schuck, Plasmonic near-field probes: a comparison of the campanile geometry with other sharp tips, Opt. Express 21(7), 8166 (2013)
https://doi.org/10.1364/OE.21.008166
193 W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Wu, M. B. Salmeron, and P. J. Schuck, Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide, Nat. Commun. 6, 7993 (2015)
https://doi.org/10.1038/ncomms8993
194 X. Cui, G. H. Lee, Y. D. Kim, G. Arefe, P. Y. Huang, C. H. Lee, D. A. Chenet, X. Zhang, L. Wang, F. Ye, F. Pizzocchero, B. S. Jessen, K. Watanabe, T. Taniguchi, D. A. Muller, T. Low, P. Kim, and J. Hone, Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform, Nat. Nanotechnol. 10(6), 534 (2015)
https://doi.org/10.1038/nnano.2015.70
195 E. Devaux, A. Dereux, E. Bourillot, J. C. Weeber, Y. Lacroute, J. P. Goudonnet, and C. Girard, Local detection of the optical magnetic field in the near zone of dielectric samples, Phys. Rev. B 62(15), 10504 (2000)
https://doi.org/10.1103/PhysRevB.62.10504
196 Z. H. Kim and S. R. Leone, Polarization-selective mapping of near-field intensity and phase around gold nanoparticles using apertureless near-field microscopy, Opt. Express 16(3), 1733 (2008)
https://doi.org/10.1364/OE.16.001733
197 D. S. Kim, J. Heo, S. H. Ahn, S. W. Han, W. S. Yun, and Z. H. Kim, Real-space mapping of the strongly coupled plasmons of nanoparticle dimers, Nano Lett. 9(10), 3619 (2009)
https://doi.org/10.1021/nl901839f
198 M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, Controlling the near-field oscillations of loaded plasmonic nanoantennas, Nat. Photonics 3(5), 287 (2009)
https://doi.org/10.1038/nphoton.2009.46
199 M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, Nanofocusing of mid-infrared energy with tapered transmission lines, Nat. Photonics 5(5), 283 (2011)
https://doi.org/10.1038/nphoton.2011.33
200 R. L. Olmon, M. Rang, P. M. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, Determination of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: A near-field optical vector network analyzer, Phys. Rev. Lett. 105(16), 167403 (2010)
https://doi.org/10.1103/PhysRevLett.105.167403
201 R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, and M. B. Raschke, Near-field imaging of optical antenna modes in the mid-infrared, Opt. Express 16(25), 20295 (2008)
https://doi.org/10.1364/OE.16.020295
202 N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Hofler, Plasmonic quantum cascade laser antenna, Appl. Phys. Lett. 91(17), 173113 (2007)
https://doi.org/10.1063/1.2801551
203 L. Novotny and C. Henkel, Van der Waals versus optical interaction between metal nanoparticles, Opt. Lett. 33(9), 1029 (2008)
https://doi.org/10.1364/OL.33.001029
204 J. Dorfmüller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, Near-field dynamics of optical Yagi-Uda nanoantennas, Nano Lett. 11(7), 2819 (2011)
https://doi.org/10.1021/nl201184n
205 T. Zentgraf, J. Dorfmuller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials, Opt. Lett. 33(8), 848 (2008)
https://doi.org/10.1364/OL.33.000848
206 B. Deutsch, R. Hillenbrand, and L. Novotny, Visualizing the optical interaction tensor of a gold nanoparticle pair, Nano Lett. 10(2), 652 (2010)
https://doi.org/10.1021/nl9037505
207 H. A. Bechtel, J. P. Camden, Z. H. Kim, D. J. A. Brown, and R. N. Zare, Abstracts of Papers of the American Chemical Society 228, U275 (2004)
208 P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, Real-space mapping of fano interference in plasmonic metamolecules, Nano Lett. 11(9), 3922 (2011)
https://doi.org/10.1021/nl2021366
209 P. Uebel, M. A. Schmidt, H. W. Lee, and P. S. J. Russell, Polarisation-resolved near-field mapping of a coupled gold nanowire array, Opt. Express 20(27), 28409 (2012)
https://doi.org/10.1364/OE.20.028409
210 S. Mastel, S. E. Grefe, G. B. Cross, A. Taber, S. Dhuey, S. Cabrini, P. J. Schuck, and Y. Abate, Real-space mapping of nanoplasmonic hotspots via optical antenna-gap loading, Appl. Phys. Lett. 101(13), 131102 (2012)
https://doi.org/10.1063/1.4754534
211 S. E. Grefe, D. Leiva, S. Mastel, S. D. Dhuey, S. Cabrini, P. J. Schuck, and Y. Abate, Near-field spatial mapping of strongly interacting multiple plasmonic infrared antennas, Phys. Chem. Chem. Phys. 15(43), 18944 (2013)
https://doi.org/10.1039/c3cp53104j
212 T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams, Nat. Photonics 8(1), 23 (2014)
https://doi.org/10.1038/nphoton.2013.289
213 N. Ocelic, A. Huber, and R. Hillenbrand, Pseudoheterodyne detection for background-free near-field spectroscopy, Appl. Phys. Lett. 89(10), 101124 (2006)
https://doi.org/10.1063/1.2348781
214 M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, Local observations of phase singularities in optical fields in waveguide structures, Phys. Rev. Lett. 85(2), 294 (2000)
https://doi.org/10.1103/PhysRevLett.85.294
215 A. Nesci, R. Dandliker, and H. P. Herzig, Quantitative amplitude and phase measurement by use of a heterodyne scanning near-field optical microscope, Opt. Lett. 26(4), 208 (2001)
https://doi.org/10.1364/OL.26.000208
216 E. Verhagen, M. Spasenovic, A. Polman, and L. Kuipers, Nanowire plasmon excitation by adiabatic mode transformation, Phys. Rev. Lett. 102(20), 203904 (2009)
https://doi.org/10.1103/PhysRevLett.102.203904
217 M. Burresi, D. Diessel, D. Oosten, S. Linden, M. Wegener, and L. Kuipers, Negative-index metamaterials: Looking into the unit cell, Nano Lett. 10(7), 2480 (2010)
https://doi.org/10.1021/nl100943e
218 H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, Direct observation of Bloch harmonics and negative phase velocity in photonic crystal waveguides, Phys. Rev. Lett. 94(12), 123901 (2005)
https://doi.org/10.1103/PhysRevLett.94.123901
219 M. Ayache, M. P. Nezhad, S. Zamek, M. Abashin, and Y. Fainman, Near-field measurement of amplitude and phase in silicon waveguides with liquid cladding, Opt. Lett. 36(10), 1869 (2011)
https://doi.org/10.1364/OL.36.001869
220 M. Burresi, R. J. P. Engelen, A. Opheij, D. van Oosten, D. Mori, T. Baba, and L. Kuipers, Observation of polarization singularities at the nanoscale, Phys. Rev. Lett. 102(3), 033902 (2009)
https://doi.org/10.1103/PhysRevLett.102.033902
221 N. Rotenberg, T. L. Krijger, B. Feber, M. Spasenović, F. J. G. de Abajo, and L. Kuipers, Magnetic and electric response of single subwavelength holes, Phys. Rev. B 88(24), 241408 (2013)
https://doi.org/10.1103/PhysRevB.88.241408
222 M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, Probing the magnetic field of light at optical frequencies, Science 326(5952), 550 (2009)
https://doi.org/10.1126/science.1177096
223 M. Burresi, T. Kampfrath, D. van Oosten, J. C. Prangsma, B. S. Song, S. Noda, and L. Kuipers, Magnetic light-matter interactions in a photonic crystal nanocavity, Phys. Rev. Lett. 105(12), 123901 (2010)
https://doi.org/10.1103/PhysRevLett.105.123901
224 S. Vignolini, F. Intonti, F. Riboli, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, D. S. Wiersma, and M. Gurioli, Magnetic imaging in photonic crystal microcavities, Phys. Rev. Lett. 105(12), 123902 (2010)
https://doi.org/10.1103/PhysRevLett.105.123902
225 M. Spasenović, D. M. Beggs, P. Lalanne, T. F. Krauss, and L. Kuipers, Measuring the spatial extent of individual localized photonic states, Phys. Rev. B 86(15), 155153 (2012)
https://doi.org/10.1103/PhysRevB.86.155153
226 S. R. Huisman, G. Ctistis, S. Stobbe, A. P. Mosk, J. L. Herek, A. Lagendijk, P. Lodahl, W. L. Vos, and P. W. H. Pinkse, Measurement of a band-edge tail in the density of states of a photonic-crystal waveguide, Phys. Rev. B 86(15), 155154 (2012)
https://doi.org/10.1103/PhysRevB.86.155154
227 D. Denkova, N. Verellen, A. V. Silhanek, V. K. Valev, P. V. Dorpe, and V. V. Moshchalkov, Mapping magnetic near-field distributions of plasmonic nanoantennas, ACS Nano 7(4), 3168 (2013)
https://doi.org/10.1021/nn305589t
228 D. Denkova, N. Verellen, A. V. Silhanek, P. Van Dorpe, and V. V. Moshchalkov, Lateral magnetic near-field imaging of plasmonic nanoantennas with increasing complexity, Small 10(10), 1959 (2014)
https://doi.org/10.1002/smll.201302926
229 H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D. S. Kim, Bethe-hole polarization analyser for the magnetic vector of light, Nat. Commun. 2, 451 (2011)
https://doi.org/10.1038/ncomms1430
230 H. W. Kihm, J. Kim, S. Koo, J. Ahn, K. Ahn, K. Lee, N. Park, and D. S. Kim, Optical magnetic field mapping using a subwavelength aperture, Opt. Express 21(5), 5625 (2013)
https://doi.org/10.1364/OE.21.005625
231 B. le Feber, N. Rotenberg, D. M. Beggs, and L. Kuipers, Simultaneous measurement of nanoscale electric and magnetic optical fields, Nat. Photonics 8(1), 43 (2014)
https://doi.org/10.1038/nphoton.2013.323
232 N. Caselli, F. La China, W. Bao, F. Riboli, A. Gerardino, L. Li, E. H. Linfield, F. Pagliano, A. Fiore, P. J. Schuck, S. Cabrini, A. Weber-Bargioni, M. Gurioli, and F. Intonti, Deep-subwavelength imaging of both electric and magnetic localized optical fields by plasmonic campanile nanoantenna, Sci. Rep. 5, 9606 (2015)
https://doi.org/10.1038/srep09606
233 H. U. Yang, R. L. Olmon, K. S. Deryckx, X. G. Xu, H. A. Bechtel, Y. Xu, B. A. Lail, and M. B. Raschke, Accessing the optical magnetic near-field through Babinet’s principle, ACS Photonics 1(9), 894 (2014)
https://doi.org/10.1021/ph5001988
234 L. Novotny, R. X. Bian, and X. S. Xie, Theory of nanometric optical tweezers, Phys. Rev. Lett. 79(4), 645 (1997)
https://doi.org/10.1103/PhysRevLett.79.645
235 J. Berthelot, S. S. Acimovic, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, Three-dimensional manipulation with scanning near-field optical nanotweezers, Nat. Nanotechnol. 9(4), 295 (2014)
https://doi.org/10.1038/nnano.2014.24
236 R. M. Gelfand, S. Wheaton, and R. Gordon, Cleaved fiber optic double nanohole optical tweezers for trapping nanoparticles, Opt. Lett. 39(22), 6415 (2014)
https://doi.org/10.1364/OL.39.006415
237 J. Jose, S. Kress, A. Barik, L. M. Otto, J. Shaver, T. W. Johnson, Z. J. Lapin, P. Bharadwaj, L. Novotny, and S. H. Oh, Individual template-stripped conductive gold pyramids for tip-enhanced dielectrophoresis, ACS Photonics 1(5), 464 (2014)
https://doi.org/10.1021/ph500091h
238 N. M. Hameed, A. El Eter, T. Grosjean, and F. I. Baida, Stand-alone three-dimensional optical tweezers based on fibred Bowtie nanoaperture, IEEE Photonics J. 6(4), 4500510 (2014)
https://doi.org/10.1109/JPHOT.2014.2341011
239 S. Wheaton, R. M. Gelfand, and R. Gordon, Probing the Raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution, Nat. Photonics 9(1), 68 (2015)
https://doi.org/10.1038/nphoton.2014.283
240 A. A. AlBalushi and R. Gordon, A label-free Untethered approach to single-molecule protein binding kinetics, Nano Lett. 14(10), 5787 (2014)
https://doi.org/10.1021/nl502665n
241 H. K. Wickramasinghe, M. Chaigneau, R. Yasukuni, G. Picardi, and R. Ossikovski, Billion-fold increase in tip-enhanced Raman signal, ACS Nano 8(4), 3421 (2014)
https://doi.org/10.1021/nn406263m
242 I. Rajapaksa, K. Uenal, and H. K. Wickramasinghe, Image force microscopy of molecular resonance: A microscope principle, Appl. Phys. Lett. 97(7), 073121 (2010)
https://doi.org/10.1063/1.3480608
243 J. Jahng, J. Brocious, D. A. Fishman, F. Huang, X. Li, V. A. Tamma, H. K. Wickramasinghe, and E. O. Potma, Gradient and scattering forces in photoinduced force microscopy, Phys. Rev. B 90(15), 155417 (2014)
https://doi.org/10.1103/PhysRevB.90.155417
244 J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. A. Apkarian, H. K. Wickramasinghe, and E. O. Potma, Ultrafast pump-probe force microscopy with nanoscale resolution, Appl. Phys. Lett. 106(8), 083113 (2015)
https://doi.org/10.1063/1.4913853
245 R. M. Gelfand, A. Bonakdar, O. G. Memis, and H. Mohseni, Super resolution mapping of the near optical field and the gradient optical force, Proc. SPIE 8815, Nanoimaging and Nanospectroscopy 8815, 88150R (2013)
https://doi.org/10.1117/12.2024779
246 A. Giugni, B. Torre, A. Toma, M. Francardi, M. Malerba, A. Alabastri, R. P. Zaccaria, M. I. Stockman, and E. Di Fabrizio, Hot-electron nanoscopy using adiabatic compression of surface plasmons, Nat. Nanotechnol. 8(11), 845 (2013)
https://doi.org/10.1038/nnano.2013.207
247 P. J. Schuck, Nanoimaging: Hot electrons go through the barrier, Nat. Nanotechnol. 8(11), 799 (2013)
https://doi.org/10.1038/nnano.2013.228
248 A. O. Govorov, H. Zhang, and Y. K. Gun'ko, Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules, J. Phys. Chem. C 117(32), 16616 (2013)
https://doi.org/10.1021/jp405430m
249 A. Polyakov, C. Senft, K. F. Thompson, J. Feng, S. Cabrini, P. J. Schuck, H. A. Padmore, S. J. Peppernick, and W. P. Hess, Plasmon-enhanced photocathode for high brightness and high repetition rate X-ray sources, Phys. Rev. Lett. 110(7), 076802 (2013)
https://doi.org/10.1103/PhysRevLett.110.076802
250 W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer, Nat. Photonics 3(4), 220 (2009)
https://doi.org/10.1038/nphoton.2009.26
251 B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J. L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna, Nat. Photonics 4(7), 484 (2010)
https://doi.org/10.1038/nphoton.2010.90
252 R. Vincent, H. Marinchio, J. J. Saenz, and R. Carminati, Local control of the excitation of surface plasmon polaritons by near-field magneto-optical Kerr effect, Phys. Rev. B 90(24), 241412 (2014)
https://doi.org/10.1103/PhysRevB.90.241412
253 P. S. Keatley, A. Aziz, M. Ali, B. J. Hickey, M. G. Blamire, and R. J. Hicken, Optical characterization of nonlocal spin transfer torque acting on a single nanomagnet, Phys. Rev. B 89(9), 094421 (2014)
https://doi.org/10.1103/PhysRevB.89.094421
254 P. Biagioni, J. S. Huang, L. Duo, M. Finazzi, and B. Hecht, Cross resonant optical antenna, Phys. Rev. Lett. 102(25), 256801 (2009)
https://doi.org/10.1103/PhysRevLett.102.256801
255 Z. Zhang, A. Weber-Bargioni, S. W. Wu, S. Dhuey, S. Cabrini, and P. J. Schuck, Manipulating nanoscale light fields with the asymmetric Bowtie nano-colorsorter, Nano Lett. 9(12), 4505 (2009)
https://doi.org/10.1021/nl902850f
256 A. McLeod, A. Weber-Bargioni, Z. Zhang, S. Dhuey, B. Harteneck, J. B. Neaton, S. Cabrini, and P. J. Schuck, Nonperturbative visualization of nanoscale plasmonic field distributions via photon localization microscopy, Phys. Rev. Lett. 106(3), 037402 (2011)
https://doi.org/10.1103/PhysRevLett.106.037402
257 P. Biagioni, M. Savoini, J. S. Huang, L. Duo, M. Finazzi, and B. Hecht, Near-field polarization shaping by a near-resonant plasmonic cross antenna, Phys. Rev. B 80(15), 153409 (2009)
https://doi.org/10.1103/PhysRevB.80.153409
258 D. Lin and J. S. Huang, Slant-gap plasmonic nanoantennas for optical chirality engineering and circular dichroism enhancement, Opt. Express 22(7), 7434 (2014)
https://doi.org/10.1364/OE.22.007434
259 Y. Tang and A. E. Cohen, Enhanced enantioselectivity in excitation of chiral molecules by superchiral light, Science 332(6027), 333 (2011)
https://doi.org/10.1126/science.1202817
260 E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, Ultrasensitive detection and characterization of biomolecules using superchiral fields, Nat. Nanotechnol. 5(11), 783 (2010)
https://doi.org/10.1038/nnano.2010.209
261 B. le Feber, N. Rotenberg, and L. Kuipers, Nanophotonic control of circular dipole emission, Nat. Commun. 6, 6695 (2015)
https://doi.org/10.1038/ncomms7695
262 I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, Deterministic photon–emitter coupling in chiral photonic circuits, Nat. Nanotechnol. 10(9), 775 (2015)
https://doi.org/10.1038/nnano.2015.159
263 J. Rudge, H. Xu, J. Kolthammer, Y. K. Hong, and B. C. Choi, Sub-nanosecond time-resolved near-field scanning magneto-optical microscope, Rev. Sci. Instrum. 86(2), 023703 (2015)
https://doi.org/10.1063/1.4907712
[1] Ning Zhang, Jiayu Wu, Taoyuan Yu, Jiaqi Lv, He Liu, Xiping Xu. Theory, preparation, properties and catalysis application in 2D graphynes-based materials[J]. Front. Phys. , 2021, 16(2): 23201-.
[2] Dimuthu Wijethunge, Lei Zhang, Cheng Tang, Aijun Du. Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching[J]. Front. Phys. , 2020, 15(6): 63504-.
[3] Zhi-Yue Zheng, Yu-Hao Pan, Teng-Fei Pei, Rui Xu, Kun-Qi Xu, Le Lei, Sabir Hussain, Xiao-Jun Liu, Li-Hong Bao, Hong-Jun Gao, Wei Ji, Zhi-Hai Cheng. Local probe of the interlayer coupling strength of few-layers SnSe by contact-resonance atomic force microscopy[J]. Front. Phys. , 2020, 15(6): 63505-.
[4] O. de los Santos-Sánchez. Probing intensity-field correlations of single-molecule surface-enhanced Raman-scattered light[J]. Front. Phys. , 2019, 14(6): 61601-.
[5] Sabir Hussain, Kunqi Xu, Shili Ye, Le Lei, Xinmeng Liu, Rui Xu, Liming Xie, Zhihai Cheng. Local electrical characterization of two-dimensional materials with functional atomic force microscopy[J]. Front. Phys. , 2019, 14(3): 33401-.
[6] Meng-Yin Zhou, Lin Xu, Lu-Chan Zhang, Jiang Wu, Yan-Bo Li, Huan-Yang Chen. Perfect invisibility concentrator with simplified material parameters[J]. Front. Phys. , 2018, 13(5): 134101-.
[7] Jun Mao (毛军), Yong Wang (王勇), Zhilong Zheng (郑智龙), Dehui Deng (邓德会). The rise of two-dimensional MoS2 for catalysis[J]. Front. Phys. , 2018, 13(4): 138118-.
[8] Wen-Cheng Yue, Pei-Jun Yao, Li-Xin Xu, Hai Ming. All-dielectric bowtie waveguide with deep subwavelength mode confinement[J]. Front. Phys. , 2018, 13(4): 134207-.
[9] Mosayeb Naseri, Shiru Lin, Jaafar Jalilian, Jinxing Gu, Zhongfang Chen. Penta-P2X (X=C, Si) monolayers as wide-bandgap semiconductors: A first principles prediction[J]. Front. Phys. , 2018, 13(3): 138102-.
[10] Shiru Lin, Yanchao Wang, Zhongfang Chen. Two-dimensional aluminum monoxide nanosheets: A computational study[J]. Front. Phys. , 2018, 13(3): 138109-.
[11] Zhinan Ma (马志楠), Jibin Zhuang (庄吉彬), Xu Zhang (张旭), Zhen Zhou (周震). SiP monolayers: New 2D structures of group IV-V compounds for visible-light photohydrolytic catalysts[J]. Front. Phys. , 2018, 13(3): 138104-.
[12] Arthur Losquin,Tom T. A. Lummen. Electron microscopy methods for space-, energy-, and time-resolved plasmonics[J]. Front. Phys. , 2017, 12(1): 127301-.
[13] Fulvio Melia. Physical basis for the symmetries in the Friedmann–Robertson–Walker metric[J]. Front. Phys. , 2016, 11(4): 119801-.
[14] Sanshui Xiao,Xiaolong Zhu,Bo-Hong Li,N. Asger Mortensen. Graphene-plasmon polaritons: From fundamental properties to potential applications[J]. Front. Phys. , 2016, 11(2): 117801-.
[15] Lei Jin-Cheng(雷进程), Zhang Xu(张旭), Zhou Zhen(周震). Recent advances in MXene: Preparation, properties, and applications[J]. Front. Phys. , 2015, 10(3): 107303-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed