|
|
Two-body physics in quasi-low-dimensional atomic gases under spin–orbit coupling |
Jing-Kun Wang1,2,Wei Yi3,4,*( ),Wei Zhang1,2,*( ) |
1. Department of Physics, Renmin University of China, Beijing 100872, China 2. Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China 3. Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, China 4. Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract One of the most dynamic directions in ultracold atomic gas research is the study of low-dimensional physics in quasi-low-dimensional geometries, where atoms are confined in strongly anisotropic traps. Recently, interest has significantly intensified with the realization of synthetic spin–orbit coupling (SOC). As a first step toward understanding the SOC effect in quasi-low-dimensional systems, the solution of two-body problems in different trapping geometries and different types of SOC has attracted great attention in the past few years. In this review, we discuss both the scattering-state and the bound-state solutions of two-body problems in quasi-one and quasi-two dimensions. We show that the degrees of freedom in tightly confined dimensions, in particular with the presence of SOC, may significantly affect system properties. Specifically, in a quasi-one-dimensional atomic gas, a one-dimensional SOC can shift the positions of confinement-induced resonances whereas, in quasitwo-dimensional gases, a Rashba-type SOC tends to increase the two-body binding energy, such that more excited states in the tightly confined direction are occupied and the system is driven further away from a purely two-dimensional gas. The effects of the excited states can be incorporated by adopting an effective low-dimensional Hamiltonian having the form of a two-channel model. With the bare parameters fixed by two-body solutions, this effective Hamiltonian leads to qualitatively different many-body properties compared to a purely low-dimensional model.
|
Keywords
artificial gauge field
synthetic spin–orbit coupling
quasi-low dimensional sysem
|
Corresponding Author(s):
Wei Yi,Wei Zhang
|
Online First Date: 30 December 2015
Issue Date: 08 June 2016
|
|
1 |
Y. J. Lin, R. L. Compton, A. R. Perry, W. D. Phillips, J. V. Porto, and I. B. Spielman, Bose–Einstein condensate in a uniform light-induced vector potential, Phys. Rev. Lett. 102(13), 130401 (2009)
https://doi.org/10.1103/PhysRevLett.102.130401
|
2 |
Y. J. Lin, K. Jiménez-García, and I. B. Spielman, Spin–orbit-coupled Bose–Einstein condensates, Nature 471(7336), 83 (2011)
https://doi.org/10.1038/nature09887
|
3 |
J. Y. Zhang, S. C. Ji, Z. Chen, L. Zhang, Z. D. Du, B. Yan, G. S. Pan, B. Zhao, Y. J. Deng, H. Zhai, S. Chen, and J. W. Pan, Collective dipole oscillations of a spin–orbit coupled Bose–Einstein condensate, Phys. Rev. Lett. 109(11), 115301 (2012)
https://doi.org/10.1103/PhysRevLett.109.115301
|
4 |
C. Qu, C. Hamner, M. Gong, C. Zhang, and P. Engels, Non-equilibrium spin dynamics and Zitterbewegung in quenched spin–orbit coupled Bose–Einstein condensates, Phys. Rev. A 88, 021604(R) (2013)
|
5 |
S. C. Ji, J. Y. Zhang, L. Zhang, Z. D. Du, W. Zheng, Y. J. Deng, H. Zhai, S. Chen, and J. W. Pan, Experimental determination of the finite-temperature phase diagram of a spin–orbit coupled Bose gas, Nat. Phys. 10(4), 314 (2014)
https://doi.org/10.1038/nphys2905
|
6 |
P. Wang, Z. Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai, and J. Zhang, Spin-orbit coupled degenerate Fermi gases, Phys. Rev. Lett. 109(9), 095301 (2012)
https://doi.org/10.1103/PhysRevLett.109.095301
|
7 |
L. W. Cheuk, A. T. Sommer, Z. Hadzibabic, T. Yefsah, W. S. Bakr, and M. W. Zwierlein, Spin-injection spectroscopy of a spin–orbit coupled Fermi gas, Phys. Rev. Lett. 109(9), 095302 (2012)
https://doi.org/10.1103/PhysRevLett.109.095302
|
8 |
Z. Fu, L. Huang, Z. Meng, P. Wang, L. Zhang, S. Zhang, H. Zhai, P. Zhang, and J. Zhang, Production of Feshbach molecules induced by spin–orbit coupling in Fermi gases, Nat. Phys. 10(2), 110 (2014)
https://doi.org/10.1038/nphys2824
|
9 |
P. J. Wang and J. Zhang, Spin–orbit coupling in Bose–Einstein condensate and degenerate Fermi gases, Front. Phys. 9(5), 612 (2014)
https://doi.org/10.1007/s11467-013-0377-x
|
10 |
H. Zhai, Spin–orbit coupled quantum gases, Int. J. Mod. Phys. B 26(01), 1230001 (2012)
https://doi.org/10.1142/S0217979212300010
|
11 |
V. Galitski and I. B. Spielman, Spin–orbit coupling in quantum gases, Nature 494(7435), 49 (2013)
https://doi.org/10.1038/nature11841
|
12 |
X. Zhou, Y. Li, Z. Cai, and C. Wu, Unconventional states of bosons with the synthetic spin–orbit coupling, J. Phys. B 46(13), 134001 (2013)
https://doi.org/10.1088/0953-4075/46/13/134001
|
13 |
N. Goldman, G. Juzeliūnas, P. Öhberg, and I. B. Spielman, Light-induced gauge fields for ultracold atoms, Rep. Prog. Phys. 77(12), 126401 (2014)
https://doi.org/10.1088/0034-4885/77/12/126401
|
14 |
H. Zhai, Degenerate quantum gases with spin–orbit coupling: A review, Rep. Prog. Phys. 78(2), 026001 (2015)
https://doi.org/10.1088/0034-4885/78/2/026001
|
15 |
J. Zhang, H. Hu, X. J. Liu, and H. Pu, Fermi gases with synthetic spin–orbit coupling, Annu. Rev. Cold At. Mol. 2, 81 (2014)
https://doi.org/10.1142/9789814590174_0002
|
16 |
Y. Xu and C. Zhang, Topological Fulde–Ferrell superfluids of a spin–orbit coupled Fermi gas, Int. J. Mod. Phys. B 29(01), 1530001 (2015)
https://doi.org/10.1142/S0217979215300017
|
17 |
W. Yi, W. Zhang, and X. Cui, Pairing superfluidity in spin–orbit coupled ultracold Fermi gases, Sci. China- Phys. Mech. Astron. 58(1), 014201 (2015)
https://doi.org/10.1007/s11433-014-5609-8
|
18 |
J. P. Vyasanakere and V. B. Shenoy, Bound states of two spin-1/2 fermions in a synthetic non-Abelian gauge field, Phys. Rev. B 83(9), 094515 (2011)
https://doi.org/10.1103/PhysRevB.83.094515
|
19 |
J. P. Vyasanakere, S. Zhang, and V. B. Shenoy, BCS–BEC crossover induced by a synthetic non-Abelian gauge field, Phys. Rev. B 84(1), 014512 (2011)
https://doi.org/10.1103/PhysRevB.84.014512
|
20 |
X. Cui, Mixed-partial-wave scattering with spin–orbit coupling and validity of pseudopotentials, Phys. Rev. A 85(2), 022705 (2012)
https://doi.org/10.1103/PhysRevA.85.022705
|
21 |
Z. F. Xu and L. You, Dynamical generation of arbitrary spin–orbit couplings for neutral atoms, Phys. Rev. A 85(4), 043605 (2012)
https://doi.org/10.1103/PhysRevA.85.043605
|
22 |
F. Wu, R. Zhang, T. S. Deng, W. Zhang, W. Yi, and G. C. Guo, BCS–BEC crossover and quantum phase transition in an ultracold Fermi gas under spin–orbit coupling, Phys. Rev. A 89(6), 063610 (2014)
https://doi.org/10.1103/PhysRevA.89.063610
|
23 |
Z. Y. Shi, X. Cui, and H. Zhai, Universal trimers induced by spin–orbit coupling in ultracold Fermi gases, Phys. Rev. Lett. 112(1), 013201 (2014)
https://doi.org/10.1103/PhysRevLett.112.013201
|
24 |
X. Cui, and W. Yi, Universal Borromean binding in spin–orbit-coupled ultracold fermi gases, Phys. Rev. X 4(3), 031026 (2014)
https://doi.org/10.1103/PhysRevX.4.031026
|
25 |
M. Sato, Y. Takahashi, and S. Fujimoto, Non-Abelian topological order in s-wave superfluids of ultracold fermionic atoms, Phys. Rev. Lett. 103(2), 020401 (2009)
https://doi.org/10.1103/PhysRevLett.103.020401
|
26 |
J. P. Kestner and L. M. Duan, Conditions of low dimensionality for strongly interacting atoms under a transverse trap, Phys. Rev. A 74(5), 053606 (2006)
https://doi.org/10.1103/PhysRevA.74.053606
|
27 |
J. P. Kestner and L. M. Duan, Effective low-dimensional Hamiltonian for strongly interacting atoms in a transverse trap, Phys. Rev. A 76(6), 063610 (2007)
https://doi.org/10.1103/PhysRevA.76.063610
|
28 |
Z. Q. Yu and H. Zhai, Spin–orbit coupled Fermi gases across a Feshbach resonance, Phys. Rev. Lett. 107(19), 195305 (2011)
https://doi.org/10.1103/PhysRevLett.107.195305
|
29 |
R. Zhang, F. Wu, J. R. Tang, G. C. Guo, W. Yi, and W. Zhang, Significance of dressed molecules in a quasi-two-dimensional Fermi gas with spin–orbit coupling, Phys. Rev. A 87(3), 033629 (2013)
https://doi.org/10.1103/PhysRevA.87.033629
|
30 |
T. Stöferle, H. Moritz, K. Günter, M. Köhl, and T. Esslinger, Molecules of fermionic atoms in an optical lattice, Phys. Rev. Lett. 96(3), 030401 (2006)
https://doi.org/10.1103/PhysRevLett.96.030401
|
31 |
B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac, G. V. Shlyapnikov, T. W. Hänsch, and I. Bloch, Tonks–Girardeau gas of ultracold atoms in an optical lattice, Nature 429(6989), 227 (2004)
https://doi.org/10.1038/nature02530
|
32 |
T. Kinoshita, T. Wenger, and D. S. Weiss, Observation of a one-dimensional Tonks–Girardeau gas, Science 305(5687), 1125 (2004)
https://doi.org/10.1126/science.1100700
|
33 |
M. Köhl, H. Moritz, T. Stöferle, K. Günter, and T. Esslinger, Fermionic atoms in a three dimensional optical lattice: Observing Fermi surfaces, dynamics, and interactions, Phys. Rev. Lett. 94(8), 080403 (2005)
https://doi.org/10.1103/PhysRevLett.94.080403
|
34 |
Y. Castin, Simple theoretical tools for low dimension Bose gases, J. Phys. IV 116, 89 (2004)
https://doi.org/10.1051/jp4:2004116004
|
35 |
D. E. Sheehy and L. Radzihovsky, Quantum decoupling transition in a one-dimensional Feshbach-resonant superfluid, Phys. Rev. Lett. 95(13), 130401 (2005)
https://doi.org/10.1103/PhysRevLett.95.130401
|
36 |
E. Orignac and R. Citro, Phase transitions in the boson–fermion resonance model in one dimension, Phys. Rev. A 73(6), 063611 (2006)
https://doi.org/10.1103/PhysRevA.73.063611
|
37 |
M. Olshanii, Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons, Phys. Rev. Lett. 81(5), 938 (1998)
https://doi.org/10.1103/PhysRevLett.81.938
|
38 |
T. Bergeman, M. G. Moore, and M. Olshanii, Atom–atom scattering under cylindrical harmonic confinement: Numerical and analytic studies of the confinement induced resonance, Phys. Rev. Lett. 91(16), 163201 (2003)
https://doi.org/10.1103/PhysRevLett.91.163201
|
39 |
T. Busch, B. G. Englert, K. Rzażewski, and M. Wilkens, Two cold atoms in a harmonic trap, Found. Phys. 28(4), 549 (1998)
https://doi.org/10.1023/A:1018705520999
|
40 |
D. S. Petrov, M. Holzmann, and G. V. Shlyapnikov, Bose–Einstein condensation in quasi-2D trapped gases, Phys. Rev. Lett. 84(12), 2551 (2000)
https://doi.org/10.1103/PhysRevLett.84.2551
|
41 |
D. S. Petrov and G. V. Shlyapnikov, Interatomic collisions in a tightly confined Bose gas, Phys. Rev. A 64(1), 012706 (2001)
https://doi.org/10.1103/PhysRevA.64.012706
|
42 |
P. O. Fedichev, M. J. Bijlsma, and P. Zoller, Extended molecules and geometric scattering resonances in optical lattices, Phys. Rev. Lett. 92(8), 080401 (2004)
https://doi.org/10.1103/PhysRevLett.92.080401
|
43 |
M. Holland, S. J. J. M. F. Kokkelmans, M. L. Chiofalo, and R. Walser, Resonance superfluidity in a quantum degenerate Fermi gas, Phys. Rev. Lett. 87(12), 120406 (2001)
https://doi.org/10.1103/PhysRevLett.87.120406
|
44 |
M. H. Szymańska, K. Góral, T. Köhler, and K. Burnett, Conventional character of the BCS–BEC crossover in ultracold gases of K40, Phys. Rev. A 72(1), 013610 (2005)
https://doi.org/10.1103/PhysRevA.72.013610
|
45 |
Q. Chen, J. Stajic, S. Tan, and K. Levin, BCS–BEC crossover: From high temperature superconductors to ultracold superfluids, Phys. Rep. 412(1), 1 (2005)
https://doi.org/10.1016/j.physrep.2005.02.005
|
46 |
Q. Chen and J. Wang, Pseudogap phenomena in ultracold atomic Fermi gases, Front. Phys. 9(5), 570 (2014)
https://doi.org/10.1007/s11467-014-0448-7
|
47 |
L. M. Duan, Effective Hamiltonian for fermions in an optical lattice across a Feshbach resonance, Phys. Rev. Lett. 95(24), 243202 (2005)
https://doi.org/10.1103/PhysRevLett.95.243202
|
48 |
R. B. Diener and T. L. Ho, Fermions in optical lattices swept across Feshbach resonances, Phys. Rev. Lett. 96(1), 010402 (2006)
https://doi.org/10.1103/PhysRevLett.96.010402
|
49 |
C. A. Regal, M. Greiner, and D. S. Jin, Observation of resonance condensation of fermionic atom pairs, Phys. Rev. Lett. 92(4), 040403 (2004)
https://doi.org/10.1103/PhysRevLett.92.040403
|
50 |
K. Huang, Statistical Mechanics, 2nd Ed., New York: Wiley, 1987
|
51 |
L. Tonks, The complete equation of state of one, two and three-dimensional gases of hard elastic spheres, Phys. Rev. 50(10), 955 (1936)
https://doi.org/10.1103/PhysRev.50.955
|
52 |
H. Moritz, T. Stöferle, K. Günter, M. Köhl, and T. Esslinger, Confinement induced molecules in a 1D Fermi gas, Phys. Rev. Lett. 94(21), 210401 (2005)
https://doi.org/10.1103/PhysRevLett.94.210401
|
53 |
J. K. Chin, D. E. Miller, Y. Liu, C. Stan, W. Setiawan, C. Sanner, K. Xu, and W. Ketterle, Evidence for superfluidity of ultracold fermions in an optical lattice, Nature 443(7114), 961 (2006)
https://doi.org/10.1038/nature05224
|
54 |
Z. Hadzibabic, P. Krüger, M. Cheneau, B. Battelier, and J. Dalibard, Berezinskii–Kosterlitz–Thouless crossover in a trapped atomic gas, Nature 441(7097), 1118 (2006)
https://doi.org/10.1038/nature04851
|
55 |
W. Zhang, G. D. Lin, and L. M. Duan, BCS–BEC crossover of a quasi-two-dimensional Fermi gas: The significance of dressed molecules, Phys. Rev. A 77(6), 063613 (2008)
https://doi.org/10.1103/PhysRevA.77.063613
|
56 |
P. Dyke, E. D. Kuhnle, S. Whitlock, H. Hu, M. Mark, S. Hoinka, M. Lingham, P. Hannaford, and C. J. Vale, Crossover from 2D to 3D in a weakly interacting Fermi gas, Phys. Rev. Lett. 106(10), 105304 (2011)
https://doi.org/10.1103/PhysRevLett.106.105304
|
57 |
A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics, 2nd Ed., New York: Dover, 1975
|
58 |
L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 3rd Ed., Oxford: Butterworth–Heinemann, 1999
|
59 |
Y. Kagan, B. V. Svistunov, and G. V. Shlyapnikov, Influence on inelastic processes of the phase transition in a weakly collisional two-dimensional Bose gas, Sov. Phys. JETP 66, 480 (1987)
|
60 |
R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, 2nd Ed., New York: McGraw-Hill, 1995
|
61 |
W. Zhang and P. Zhang, Confinement-induced resonances in quasi-one-dimensional traps with transverse anisotropy, Phys. Rev. A 83(5), 053615 (2011)
https://doi.org/10.1103/PhysRevA.83.053615
|
62 |
A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev, Integrals and Series, 2nd Ed., New York: Gordon and Breach, 1986
|
63 |
Z. Idziaszek and T. Calarco, Analytical solutions for the dynamics of two trapped interacting ultracold atoms, Phys. Rev. A 74(2), 022712 (2006)
https://doi.org/10.1103/PhysRevA.74.022712
|
64 |
X. J. Liu and H. Hu, Topological superfluid in one-dimensional spin–orbit-coupled atomic Fermi gases, Phys. Rev. A 85(3), 033622 (2012)
https://doi.org/10.1103/PhysRevA.85.033622
|
65 |
J. R. Taylor, Scattering Theory, 2nd Ed., New York: Wiley, 1972
|
66 |
P. Zhang, L. Zhang, and W. Zhang, Interatomic collisions in two-dimensional and quasi-two-dimensional confinements with spin–orbit coupling, Phys. Rev. A 86(4), 042707 (2012)
https://doi.org/10.1103/PhysRevA.86.042707
|
67 |
Y. C. Zhang, S. W. Song, and W. M. Liu, The confinement induced resonance in spin–orbit coupled cold atoms with Raman coupling, Sci. Rep. 4, 4992 (2014)
https://doi.org/10.1038/srep04992
|
68 |
R. Zhang and W. Zhang, Effective Hamiltonians for quasi-one-dimensional Fermi gases with spin–orbit coupling, Phys. Rev. A 88(5), 053605 (2013)
https://doi.org/10.1103/PhysRevA.88.053605
|
69 |
L. Dell'Anna, G. Mazzarella, and L. Salasnich, Condensate fraction of a resonant Fermi gas with spin–orbit coupling in three and two dimensions, Phys. Rev. A 84(3), 033633 (2011)
https://doi.org/10.1103/PhysRevA.84.033633
|
70 |
A. J. Leggett, Modern Trends in the Theory of Condensed Matter, 2nd Ed., Berlin: Springer-Verlag, 1980
|
71 |
P. Nozières and S. Schmitt-Rink, Bose condensation in an attractive fermion gas: From weak to strong coupling superconductivity, J. Low Temp. Phys. 59(3), 195 (1985)
https://doi.org/10.1007/BF00683774
|
72 |
C. A. R. S. de Melo, M. Randeria, and J. R. Engelbrecht, Crossover from BCS to Bose superconductivity– transition temparetaure and time-dependent Ginzburg–Landau theory, Phys. Rev. Lett. 71, 3202 (1993)
https://doi.org/10.1103/PhysRevLett.71.3202
|
73 |
J. Zhou, W. Zhang, and W. Yi, Topological superfluid in a trapped two-dimensional polarized Fermi gas with spin–orbit coupling, Phys. Rev. A 84(6), 063603 (2011)
https://doi.org/10.1103/PhysRevA.84.063603
|
74 |
W. Yi and L. M. Duan, BCS–BEC crossover and quantum phase transition for Li6 and K40 atoms across the Feshbach resonance, Phys. Rev. A 73(6), 063607 (2006)
https://doi.org/10.1103/PhysRevA.73.063607
|
75 |
P. Fulde and R. A. Ferrell, Superconductivity in a strong spin-exchange field, Phys. Rev. 135(3A), A550 (1964)
https://doi.org/10.1103/PhysRev.135.A550
|
76 |
A. I. Larkin and Y. N. Ovchinnikov, Inhomogeneous state of superconductors, Sov. Phys. JETP 20, 762 (1965)
|
77 |
W. V. Liu and F. Wilczek, Interior gap superfluidity, Phys. Rev. Lett. 90(4), 047002 (2003)
https://doi.org/10.1103/PhysRevLett.90.047002
|
78 |
C. Zhang, S. Tewari, R. M. Lutchyn, and S. Das Sarma, px+ipy superfluid from s-wave interactions of fermionic cold atoms, Phys. Rev. Lett. 101(16), 160401 (2008)
https://doi.org/10.1103/PhysRevLett.101.160401
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|