Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2016, Vol. 11 Issue (1) : 117101    https://doi.org/10.1007/s11467-015-0542-5
RESEARCH ARTICLE
Dominant ferromagnetic coupling over antiferromagnetic in Ni doped ZnO: First-principles calculations
Bakhtiar Ul Haq1,2,Rashid Ahmed1,*(),Galila Abdellatif5,Amiruddin Shaari1,Faheem K. Butt3,4,Mohammed Benali Kanoun6,Souraya Goumri-Said6,*()
1. Department of Physics, Faculty of Science, UniversitiTeknologi Malaysia, UTM Skudai, Johor 81310, Malaysia
2. Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea
3. Physik-Department ECS, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
4. Department of Physics, The University of Lahore, 1-KM Defence Road, Lahore, Pakistan
5. Department of Physics, Faculty of Science, Cairo University, Giza Egypt
6. Physics Department, College of Science, AlFaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
 Download: PDF(402 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The low magnetic moment (MM) in diluted magnetic semiconductors (DMS) at low impurity doping levels has triggered considerable research into condensed magnetic semiconductors (CMS).This work reports an ab-initio investigation of the electronic structures and magnetic properties of ZnO in a zinc-blende (ZB) structure doped with nickel ions. Ni-doped ZnO-based DMS and CMS exhibit a dominance of ferromagnetic coupling over antiferromagnetic. A robust increase in the magnetization has been observed as a function of Ni impurity levels. This material favors short-range magnetic interactions at the ground state, suggesting that the observed ferromagnetism is defined by the double exchange mechanism. The spin-polarized density of states (DOS) of Ni-doped ZnO characterizes it as half-metallic with a considerable energy gap for up-spin components and as metallic for-down spins. Half-metallic Ni:ZnO based magnetic semiconductors with high magnetization are expected to have potential applications in spintronics.

Keywords ZnO      diluted magnetic semiconductors      ab-initio calculations      electronic structure      magnetic properties     
Fund: 
Corresponding Author(s): Rashid Ahmed,Souraya Goumri-Said   
Online First Date: 18 January 2016    Issue Date: 01 February 2016
 Cite this article:   
Faheem K. Butt,Mohammed Benali Kanoun,Souraya Goumri-Said, et al. Dominant ferromagnetic coupling over antiferromagnetic in Ni doped ZnO: First-principles calculations[J]. Front. Phys. , 2016, 11(1): 117101.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-015-0542-5
https://academic.hep.com.cn/fop/EN/Y2016/V11/I1/117101
1 Y. Ohno, D. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. Awschalom, Nature 402(6763), 790 (1999)
https://doi.org/10.1038/45509
2 T. Dietl, H. Ohno, F. Matsukura, J.Cibert, and D. Ferrand, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors, Science 287(5455), 1019 (2000)
https://doi.org/10.1126/science.287.5455.1019
3 T. Fukumura, Z. Jin, M. Kawasaki, T. Shono, T. Hasegawa, S. Koshihara, and H. Koinuma, Magnetic properties of Mn-doped ZnO, Appl. Phys. Lett. 78(7), 958 (2001)
https://doi.org/10.1063/1.1348323
4 T. Fukumura, Z. Jin, A. Ohtomo, H. Koinuma, and M. Kawasaki, An oxide-diluted magnetic semiconductor: Mn-doped ZnO, Appl. Phys. Lett. 75(21), 3366 (1999)
https://doi.org/10.1063/1.125353
5 A. Bonanni and T. Dietl, A story of high-temperature ferromagnetism in semiconductors, Chem. Soc. Rev. 39(2), 528 (2010)
https://doi.org/10.1039/B905352M
6 I. Bilecka, L. Luo, I. Djerdj, M. D. Rossell, M. Jagodic, Z. Jaglicic, Y. Masubuchi, S. Kikkawa, and M. Niederberger, Microwave-assisted nonaqueous sol-gel chemistry for highly concentrated ZnO-based magnetic semiconductor nanocrystals, J. Phys. Chem. C 115(5), 1484 (2011)
https://doi.org/10.1021/jp108050w
7 F. Filippone, G. Mattioli, P. Alippi, and A. A. Bonapasta, Clusters and magnetic anchoring points in (Ga,Fe)N condensed magnetic semiconductors, Phys. Rev. Lett. 107(19), 196401 (2011)
https://doi.org/10.1103/PhysRevLett.107.196401
8 M. V. Limaye, S. B. Singh, S. K.Date, R. Gholap, and S. K. Kulkarni, Epitaxially grown zinc-blende structured Mn doped ZnO nanoshell on ZnS nanoparticles, Mater. Res. Bull. 44(2), 339 (2009)
https://doi.org/10.1016/j.materresbull.2008.05.015
9 A. Ashrafi and C. Jagadish, Review of zincblende ZnO: Stability of metastable ZnO phases, J. Appl. Phys. 102(7), 071101 (2007)
https://doi.org/10.1063/1.2787957
10 G. Lee, T. Kawazoe, and M. Ohtsu, Room temperature near-field photoluminescence of zinc-blend and wurtzite ZnO structures, Appl. Surf. Sci. 239(3), 394 (2005)
https://doi.org/10.1016/j.apsusc.2004.06.004
11 J. Zhang, K. Yao, Z. Liu, and G. Gao, First principles calculations of Co-doped zinc-blende ZnO magnetic semiconductor, Physica B 405(6), 1447 (2010)
https://doi.org/10.1016/j.physb.2009.11.001
12 N. Mamouni, M. Belaiche, A. Benyoussef, A. El Kenz, H. Ez-Zahraouy, M. Loulidi, E. Saidi, and E. Hlil, Electronic and magnetic structures of V-doped zinc blende Zn 1-xVxNyO1-y and Zn 1-xVxPyO1-y, Chin. Phys. B 20(8), 087504 (2011)
https://doi.org/10.1088/1674-1056/20/8/087504
13 C. C. Xu, L. Jiang, N. Leng, and P. J. Liu, Selective triggering of phase change in dielectrics by femtosecond pulse trains based on electron dynamics control, Chin. Phys. B 22(4), 047507 (2013)
https://doi.org/10.1088/1674-1056/22/4/045203
14 X. Li, J. Zhang, B. Xu, and K. Yao, Half-metallic ferromagnetism in Cu-doped zinc-blende ZnO from first principles study, J. Magn. Magn. Mater. 324(4), 584 (2012)
https://doi.org/10.1016/j.jmmm.2011.08.042
15 B. U. Haq, R. Ahmed, A. Afaq, A. Shaari, and M. Zarshenas, Structural and electronic properties of ni-doped ZnO in zinc-blende phase: A DFT investigations, in: International Conference on Fundamental and Applied Sciences 2012 (ICFAS2012), AIP Publishing, 2012
https://doi.org/10.1063/1.4757437
16 T. Wakano, N. Fujimura, Y. Morinaga, N. Abe, A. Ashida, and T. Ito, Magnetic and magneto-transport properties of ZnO:Ni films, Physica E 10(1), 260 (2001)
https://doi.org/10.1016/S1386-9477(01)00095-9
17 S. W. Jung, W. I. Park, G. C. Yi, and M. Kim, Fabrication and controlled magnetic properties of Ni/ZnO nanorod heterostructures, Adv. Mater. 15(16), 1358 (2003)
https://doi.org/10.1002/adma.200305172
18 J. Cui and U. Gibson, Electrodeposition and room temperature ferromagnetic anisotropy of Co and Ni-doped ZnO nanowire arrays, Appl. Phys. Lett. 87(13), 133108 (2005)
https://doi.org/10.1063/1.2058222
19 M. Venkatesan, C. Fitzgerald, J. Lunney, and J. Coey, Anisotropic ferromagnetism in substituted zinc oxide, Phys. Rev. Lett. 93(17), 177206 (2004)
https://doi.org/10.1103/PhysRevLett.93.177206
20 B. Li, X. Xiu, R. Zhang, Z. Tao, L. Chen, Z. Xie, Y. Zheng, and Z., Study of structure and magnetic properties of Ni-doped ZnO-based DMSs, Mater. Sci. Semicond. Process. 9(1), 141 (2006)
https://doi.org/10.1016/j.mssp.2006.01.074
21 D. L. Hou, R. B. Zhao, Y. Y. Wei, C. M. Zhen, C. F. Pan, and G. D. Tang, Room temperature ferromagnetism in Ni-doped ZnO films, Curr. Appl. Phys. 10(1), 124 (2010)
https://doi.org/10.1016/j.cap.2009.05.007
22 B. Pandey, S. Ghosh, P. Srivastava, D. Avasthi, D. Kabiraj, and J. Pivin, Synthesis and characterization of Ni-doped ZnO: A transparent magnetic semiconductor, J. Magn. Magn. Mater. 320(24), 3347 (2008)
https://doi.org/10.1016/j.jmmm.2008.07.018
23 C. Cong, J. Hong, Q. Liu, L. Liao, and K. Zhang, Synthesis, structure and ferromagnetic properties of Ni-doped ZnO nanoparticles, Solid State Commun. 138(10), 511 (2006)
https://doi.org/10.1016/j.ssc.2006.04.020
24 G. Pei, C. Xia, S. Cao, J. Zhang, F. Wu, and J. Xu, Synthesis and magnetic properties of Ni-doped zinc oxide powders, J. Magn. Magn. Mater. 302(2), 340 (2006)
https://doi.org/10.1016/j.jmmm.2005.09.029
25 T. Li, H. Qiu, P. Wu, M. Wang, and R. Ma, Characteristics of Ni-doped ZnO:Al films grown on glass by direct current magnetron co-sputtering, Thin Solid Films 515(7), 3905 (2007)
https://doi.org/10.1016/j.tsf.2006.11.019
26 G. Gu, G. Xiang, J. Luo, H. Ren, M. Lan, D. He, and X. Zhang, Magnetism in transition-metal-doped ZnO: A first-principles study, J. Appl. Phys. 112(2), 023913 (2012)
https://doi.org/10.1063/1.4739450
27 Z. Jin, T. Fukumura, M. Kawasaki, K. Ando, H. Saito, T. Sekiguchi, Y. Yoo, M. Murakami, Y. Matsumoto, T. Hasegawa, and H. Koinuma, High throughput fabrication of transition-metal-doped epitaxial ZnO thin films: A series of oxide-diluted magnetic semiconductors and their properties, Appl. Phys. Lett. 78(24), 3824 (2001)
https://doi.org/10.1063/1.1377856
28 Z. Yin, N. Chen, F. Yang, S. Song, C. Chai, J. Zhong, H. Qian, and K. Ibrahim, Structural, magnetic properties and photoemission study of Ni-doped ZnO, Solid State Commun. 135(7), 430 (2005)
https://doi.org/10.1016/j.ssc.2005.05.024
29 G. Pei, C. Xia, B. Wu, T. Wang, L. Zhang, Y. Dong, and J. Xu, Studies of magnetic interactions in Ni-doped ZnO from first-principles calculations, Comput. Mater. Sci. 43(3), 489 (2008)
https://doi.org/10.1016/j.commatsci.2007.12.012
30 B. B. Straumal, A. A. Myatiev, P. B. Straumal, A. A. Mazilkin, S. G. Protasova, E. Goering, and B. Baretzky, Grain boundary layers in nanocrystalline ferromagnetic zinc oxide, JETP Lett. 92(6), 396 (2010)
https://doi.org/10.1134/S0021364010180074
31 P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, An augmented plane wave plus local orbitals program for calculating crystal properties, Vienna University of Technology, Austria, 2001
32 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
33 V. I. Anisimov, J. Zaanen, and O. K. Andersen, Band theory and Mott insulators: Hubbard U instead of Stoner I, Phys. Rev. B 44(3), 943 (1991)
https://doi.org/10.1103/PhysRevB.44.943
34 F. Murnaghan, The compressibility of media under extreme pressures, Proc. Natl. Acad. Sci. USA 30(9), 244 (1944)
https://doi.org/10.1073/pnas.30.9.244
35 B. Ul Haq, R. Ahmed, S. Goumri-Said, A. Shaari, and A. Afaq, Electronic structure engineering of ZnO with the modified Becke–Johnson exchange versus the classical correlation potential approaches, Phase Transitions 86 (12), 1167 (2013)
https://doi.org/10.1080/01411594.2012.755183
36 B. Ul Haq, R. Ahmed, R. Khenata, M. Ahmed, and R. Hussain, A first-principles comparative study of exchange and correlation potentials for ZnO, Mater. Sci. Semicond. Process. 16 (4), 1169(2013)
37 B. Ul Haq, A. Afaq, R. Ahmed, and S. Naseem, A Comprehensive DFT study of zinc oxide in different phases, Int. J. Mod. Phys. C 23(06), 1250043 (2012)
https://doi.org/10.1142/S012918311250043X
38 J. Fu, B. Wu, H. Liu, C. Zhang, M. Lin, and L. Chen, Structural and magnetic ordering behaviour of (Co, Ni, and Al) doped ZnO diluted magnetic semiconductor, in: 2010 Symposium on Photonics and Optoelectronic (SOPO), IEEE, 2010
https://doi.org/10.1109/SOPO.2010.5504395
39 B. Ul Haq, R. Ahmed, A. Shaari, and S. Goumri-Said, GGA+Uinvestigations of impurity d-electrons effects on the electronic and magnetic properties of ZnO, J. Magn. Magn. Mater. 362, 104 (2014)
https://doi.org/10.1016/j.jmmm.2014.03.033
40 B. Ul Haq, R. Ahmed, and S. Goumri-Said, Tailoring ferromagnetism in chromium-doped zinc oxide, Mater. Res. Exp. 1(1), 016108 (2014)
https://doi.org/10.1088/2053-1591/1/1/016108
41 S. Goumri-Said, M. B. Kanoun, A. Manchon, and U. Schwingenschlögl, Spin-polarization reversal at the interface between benzene and Fe(100), J. Appl. Phys. 113(1), 013905 (2013)
https://doi.org/10.1063/1.4772610
42 A. Ruderman and C. Kittel, Indirect exchange coupling of nuclear magnetic moments by conduction electrons, Phys. Rev. 96(1), 99 (1954)
https://doi.org/10.1103/PhysRev.96.99
[1] Xin-Long Dong, Kun-Hua Zhang, Ming-Xiang Xu. First-principles study of electronic structure and magnetic properties of SrTi1−xMxO3 (M= Cr, Mn, Fe, Co, or Ni)[J]. Front. Phys. , 2018, 13(5): 137106-.
[2] Qi Pei, Xiao-Cha Wang, Ji-Jun Zou, Wen-Bo Mi. Tunable electronic structure and magnetic coupling in strained two-dimensional semiconductor MnPSe3[J]. Front. Phys. , 2018, 13(4): 137105-.
[3] Yan Wang (王研), Chun-Mei Hao (郝春梅), Hong-Mei Huang (黄红梅), Yan-Ling Li (李延龄). Elastic, dynamical, and electronic properties of LiHg and Li3Hg: First-principles study[J]. Front. Phys. , 2018, 13(2): 137102-.
[4] Xiao-Hong Li, Hong-Ling Cui, Rui-Zhou Zhang. Structural, optical, and thermal properties of MAX-phase Cr2AlB2[J]. Front. Phys. , 2018, 13(2): 136501-.
[5] Ze-Lian Wang,Wen-Hui Xie,Yong-Hong Zhao. Tunable band structure and effective mass of disordered chalcopyrite[J]. Front. Phys. , 2017, 12(1): 127103-.
[6] Feng-Bin Liu (刘峰斌), Jing-Lin Li (李景林), Wen-Bin Chen (陈文彬), Yan Cui (崔岩), Zhi-Wei Jiao (焦志伟), Hong-Juan Yan (阎红娟), Min Qu (屈敏), Jie-Jian Di (狄杰建). Geometries and electronic structures of the hydrogenated diamond (100) surface upon exposure to active ions: A first principles study[J]. Front. Phys. , 2016, 11(1): 116804-.
[7] Tai-Gang Liu, Wen-Qing Zhang, Yan-Li Li. First-principles study on the structure, electronic and magnetic properties of HoSin (n= 1–12, 20) clusters[J]. Front. Phys. , 2014, 9(2): 210-218.
[8] Qing-Xiao Zhou, Chao-Yang Wang, Zhi-Bing Fu, Yong-Jian Tang, Hong Zhang. Effects of various defects on the electronic properties of single-walled carbon nanotubes: A first principle study[J]. Front. Phys. , 2014, 9(2): 200-209.
[9] Xue-Wen Fu, Qiang Fu, Liang-Zhi Kou, Xin-Li Zhu, Rui Zhu, Jun Xu, Zhi-Min Liao, Qing Zhao, Wan-Lin Guo, Da-Peng Yu. Modifying optical properties of ZnO nanowires via strain-gradient[J]. Front. Phys. , 2013, 8(5): 509-515.
[10] Zhen Chen, Rui-Juan Xiao, Chao Ma, Yuan-Bin Qin, Hong-Long Shi, Zhi-Wei Wang, Yuan-Jun Song, Zhen Wang, Huan-Fang Tian, Huai-Xin Yang, Jian-Qi Li. Electronic structure of YMn2O5 studied by EELS and first-principles calculations[J]. Front. Phys. , 2012, 7(4): 429-434.
[11] Wei-dong Sheng, Marek Korkusinski, Alev Devrim Gü?lü, Michal Zielinski, Pawel Potasz, Eugene S. Kadantsev, Oleksandr Voznyy, Pawel Hawrylak. Electronic and optical properties of semiconductor and graphene quantum dots[J]. Front. Phys. , 2012, 7(3): 328-352.
[12] Dai-xiang Mou, Lin Zhao, Xing-jiang Zhou. Structural, magnetic and electronic properties of the iron–chalcogenide AxFe2-ySe2 (A=K, Cs, Rb, and Tl, etc.) superconductors[J]. Front. Phys. , 2011, 6(4): 410-428.
[13] Zi-jing DING (丁子敬), Yang JIAO (焦扬), Sheng MENG (孟胜). Quantum simulation of molecular interaction and dynamics at surfaces[J]. Front. Phys. , 2011, 6(3): 294-308.
[14] Fang WU (吴芳), Er-jun KAN (阚二军), Zhen-yu LI (李震宇). First-principle investigation of the electronic and magnetic properties of PbMn (SO4)2[J]. Front. Phys. , 2011, 6(1): 96-99.
[15] Feng-jie MA(马锋杰), Zhong-yi LU(卢仲毅), Tao XIANG(向涛). Electronic structures of ternary iron arsenides A Fe 2 As 2 ( A = Ba, Ca, or Sr)[J]. Front. Phys. , 2010, 5(2): 150-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed