|
|
Enhanced phase sensitivity of an SU(1,1) interferometer with displaced squeezed vacuum light |
Xiao-Yu Hu (胡小玉),Chao-Ping Wei (魏朝平),Ya-Fei Yu (於亚飞)( ),Zhi-Ming Zhang(张智明)( ) |
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices (SIPSE) & Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, China |
|
|
Abstract We study the phase sensitivity of an SU(1,1) interferometer with two input beams in the displaced squeezed vacuum state and the coherent state, respectively. We find that there exists an optimal squeezing fraction of the displaced squeezed vacuum state that optimizes the phase sensitivity. We also examine the effects of some factors, including the loss, mean photon number of the input beams and amplitude gain of the optical parameter amplifiers, on the optimal squeezing fraction so that we can choose the optimal values to enhance the phase sensitivity.
|
Keywords
phase sensitivity
SU(1,1) interferometer
displaced squeezed vacuum state
optimal squeezing fraction
|
Corresponding Author(s):
Ya-Fei Yu (於亚飞),Zhi-Ming Zhang(张智明)
|
Online First Date: 06 January 2016
Issue Date: 08 June 2016
|
|
1 |
B. C. Sanders and G. J. Milburn, Optimal quantum measurements for phase estimation, Phys. Rev. Lett. 75(16), 2944 (1995)
https://doi.org/10.1103/PhysRevLett.75.2944
|
2 |
R. Demkowicz-Dobrzański, M. Jarzyna, and J. Kołodyński, Quantum limits in optical interferometry, Progress in Optics60, 345 (2015)
https://doi.org/10.1016/bs.po.2015.02.003
|
3 |
C. Lee, J. Huang, H. Deng, H. Dai, and J. Xu, Nonlinear quantum interferometry with Bose condensed atoms, Front. Phys. 7(1), 109 (2012)
https://doi.org/10.1007/s11467-011-0228-6
|
4 |
C. M. Caves, Quantum-mechanical noise in an interferometer, Phys. Rev. D 23(8), 1693 (1981)
https://doi.org/10.1103/PhysRevD.23.1693
|
5 |
R. S. Bondurant and J. H. Shapiro, Squeezed states in phase-sensing interferometers, Phys. Rev. D 30(12), 2548 (1984)
https://doi.org/10.1103/PhysRevD.30.2548
|
6 |
M. J. Holland and K. Burnett, Interferometric detection of optical phase shifts at the Heisenberg limit, Phys. Rev. Lett. 71(9), 1355 (1993)
https://doi.org/10.1103/PhysRevLett.71.1355
|
7 |
O. Steuernagel and S. Scheel, Approaching the Heisenberg limit with two-mode squeezed states, J. Opt. B 6(3), S66 (2004)
https://doi.org/10.1088/1464-4266/6/3/011
|
8 |
H. Lee, P. Kok, and J. P. Dowling, A quantum Rosetta stone for interferometry, J. Mod. Opt. 49(14-15), 2325 (2002)
https://doi.org/10.1080/0950034021000011536
|
9 |
J. Joo, W. J. Munro, and T. P. Spiller, Quantum metrology with entangled coherent states, Phys. Rev. Lett. 107(8), 083601 (2011)
https://doi.org/10.1103/PhysRevLett.107.083601
|
10 |
C. C. Gerry, Heisenberg-limit interferometry with four-wave mixers operating in a nonlinear regime, Phys. Rev. A 61(4), 043811 (2000)
https://doi.org/10.1103/PhysRevA.61.043811
|
11 |
C. C. Gerry, A. Benmoussa, and R. A. Campos, Nonlinear interferometer as a resource for maximally entangled photonic states: Application to interferometry, Phys. Rev. A 66(1), 013804 (2002)
https://doi.org/10.1103/PhysRevA.66.013804
|
12 |
G. A. Durkin and J. P. Dowling, Local and global distinguishability in quantum interferometry, Phys. Rev. Lett. 99(7), 070801 (2007)
https://doi.org/10.1103/PhysRevLett.99.070801
|
13 |
M. A. Rubin and S. Kaushik, Loss-induced limits to phase measurement precision with maximally entangled states, Phys. Rev. A 75(5), 053805 (2007)
https://doi.org/10.1103/PhysRevA.75.053805
|
14 |
G. Gilbert, M. Hamrick, and Y. S. Weinstein, Practical quantum interferometry using photonic N00N states, Proc. SPIE 6573, 65730K (2007)
https://doi.org/10.1117/12.719896
|
15 |
K. Jiang, C. J. Brignac, Y. Weng, M. B. Kim, H. Lee, and J. P. Dowling, Strategies for choosing path-entangled number states for optimal robust quantum-optical metrology in the presence of loss, Phys. Rev. A 86(1), 013826 (2012)
https://doi.org/10.1103/PhysRevA.86.013826
|
16 |
S. D. Huver, C. F. Wildfeuer, and J. P. Dowling, Entangled Fock states for robust quantum optical metrology, imaging, and sensing, Phys. Rev. A 78(6), 063828 (2008)
https://doi.org/10.1103/PhysRevA.78.063828
|
17 |
J. Fiurášek, Conditional generation of N-photon entangled states of light, Phys. Rev. A 65(5), 053818 (2002)
https://doi.org/10.1103/PhysRevA.65.053818
|
18 |
M. D. Lang and C. M. Caves, Optimal quantum-enhanced interferometry using a laser power source, Phys. Rev. Lett. 111(17), 173601 (2013)
https://doi.org/10.1103/PhysRevLett.111.173601
|
19 |
B. Yurke, S. L. McCall, and J. R. Klauder, SU(2) and SU(1,1) interferometers, Phys. Rev. A 33(6), 4033 (1986)
https://doi.org/10.1103/PhysRevA.33.4033
|
20 |
W. N. Plick, J. P. Dowling, and G. S. Agarwal, Coherent-light-boosted, sub-shot noise, quantum interferometry, New J. Phys. 12(8), 083014 (2010)
https://doi.org/10.1088/1367-2630/12/8/083014
|
21 |
D. Li, C. H. Yuan, Z. Y. Ou, and W. Zhang, The phase sensitivity of an SU(1,1) interferometer with coherent and squeezed-vacuum light, New J. Phys. 16(7), 073020 (2014)
https://doi.org/10.1088/1367-2630/16/7/073020
|
22 |
A. Monras, Optimal phase measurements with pure Gaussian states, Phys. Rev. A 73(3), 033821 (2006)
https://doi.org/10.1103/PhysRevA.73.033821
|
23 |
O. Pinel, P. Jian, N. Treps, C. Fabre, and D. Braun, Quantum parameter estimation using general single-mode Gaussian states, Phys. Rev. A 88(4), 040102(R) (2013)
https://doi.org/10.1103/PhysRevA.88.040102
|
24 |
Z. Y. Ou, Enhancement of the phase-measurement sensitivity beyond the standard quantum limit by a nonlinear interferometer, Phys. Rev. A 85(2), 023815 (2012)
https://doi.org/10.1103/PhysRevA.85.023815
|
25 |
A. M. Marino, N. V. Corzo Trejo, and P. D. Lett, Effect of losses on the performance of an SU(1,1) interferometer, Phys. Rev. A 86(2), 023844 (2012)
https://doi.org/10.1103/PhysRevA.86.023844
|
26 |
W. N. Plick, P. M. Anisimov, J. P. Dowling, H. Lee, and G. S. Agarwal, Parity detection in quantum optical metrology without number-resolving detectors, New J. Phys. 12(11), 113025 (2010)
https://doi.org/10.1088/1367-2630/12/11/113025
|
27 |
U. Dorner, R. Demkowicz-Dobrzanski, B. J. Smith, J. S. Lundeen, W. Wasilewski, K. Banaszek, and I. A. Walmsley, Optimal quantum phase estimation, Phys. Rev. Lett. 102(4), 040403 (2009)
https://doi.org/10.1103/PhysRevLett.102.040403
|
28 |
T. Ono and H. F. Hofmann, Effects of photon losses on phase estimation near the Heisenberg limit using coherent light and squeezed vacuum, Phys Rev. A 81(3), 033819 (2010)
https://doi.org/10.1103/PhysRevA.81.033819
|
29 |
Y. M. Zhang, X. W. Li, W. Yang, and G. R. Jin, Quantum Fisher information of entangled coherent states in the presence of photon loss, Phys. Rev. A 88(4), 043832 (2013)
https://doi.org/10.1103/PhysRevA.88.043832
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|