Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2016, Vol. 11 Issue (4) : 110306    https://doi.org/10.1007/s11467-016-0513-5
REVIEW ARTICLE
Dissipation equation of motion approach to open quantum systems
YiJing Yan1,2,*(),Jinshuang Jin3,Rui-Xue Xu4,Xiao Zheng4
1. Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei 230026, China
2. Department of Chemistry, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
3. Department of Physics, Hangzhou Normal University, Hangzhou 310036, China
4. Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
 Download: PDF(540 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper presents a comprehensive account of the dissipaton-equation-of-motion (DEOM) theory for open quantum systems. This newly developed theory treats not only the quantum dissipative systems of primary interest, but also the hybrid environment dynamics that are also experimentally measurable. Despite the fact that DEOM recovers the celebrated hierarchical-equations-of-motion (HEOM) formalism, these two approaches have some fundamental differences. To show these differences, we also scrutinize the HEOM construction via its root at the influence functional path integral formalism. We conclude that many unique features of DEOM are beyond the reach of the HEOM framework. The new DEOM approach renders a statistical quasi-particle picture to account for the environment, which can be either bosonic or fermionic. The review covers the DEOM construction, the physical meanings of dynamical variables, the underlying theorems and dissipaton algebra, and recent numerical advancements for efficient DEOM evaluations of various problems. We also address the issue of high-order many-dissipaton truncations with respect to the invariance principle of quantum mechanics of Schrödinger versus Heisenberg prescriptions. DEOM serves as a universal tool for characterizing of stationary and dynamic properties of system-and-bath interferences, as highlighted with its real-time evaluation of both linear and nonlinear current noise spectra of nonequilibrium electronic transport.

Keywords quantum dissipation      quantum transport      entangled system-and-bath dynamics     
Corresponding Author(s): YiJing Yan   
Online First Date: 26 April 2016    Issue Date: 08 June 2016
 Cite this article:   
YiJing Yan,Jinshuang Jin,Rui-Xue Xu, et al. Dissipation equation of motion approach to open quantum systems[J]. Front. Phys. , 2016, 11(4): 110306.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-016-0513-5
https://academic.hep.com.cn/fop/EN/Y2016/V11/I4/110306
1 A. G. Redfield, The theory of relaxation processes, Adv. Magn. Reson. 1, 1 (1965)
https://doi.org/10.1016/B978-1-4832-3114-3.50007-6
2 G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys. 48(2), 119 (1976)
https://doi.org/10.1007/BF01608499
3 V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, Completely positive dynamical semigroups of N-level systems, J. Math. Phys. 17(5), 821 (1976)
https://doi.org/10.1063/1.522979
4 Y. J. Yan, Quantum Fokker-Planck theory in a non-Gaussian–Markovian medium, Phys. Rev. A 58(4), 2721 (1998)
https://doi.org/10.1103/PhysRevA.58.2721
5 R. X. Xu and Y. J. Yan, Theory of open quantum systems, J. Chem. Phys. 116(21), 9196 (2002)
https://doi.org/10.1063/1.1474579
6 Y. J. Yan and R. X. Xu, Quantum mechanics of dissipative systems, Annu. Rev. Phys. Chem. 56(1), 187 (2005)
https://doi.org/10.1146/annurev.physchem.55.091602.094425
7 R. P. Feynman and F. L. Jr Vernon, The theory of a general quantum system interacting with a linear dissipative system, Ann. Phys. 24, 118 (1963)
https://doi.org/10.1016/0003-4916(63)90068-X
8 H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 5th Ed., Singapore: World Scientific, 2009
9 U. Weiss, Quantum Dissipative Systems, 3rd Ed., Series in Modern Condensed Matter Physics, Vol. 13, Singapore: World Scientific, 2008
10 J. S. Shao, Decoupling quantum dissipation interaction via stochastic fields, J. Chem. Phys. 120(11), 5053 (2004)
https://doi.org/10.1063/1.1647528
11 Y. A. Yan, F. Yang, Y. Liu, and J. S. Shao, Hierarchical approach based on stochastic decoupling to dissipative systems, Chem. Phys. Lett. 395(4–6), 216 (2004)
https://doi.org/10.1016/j.cplett.2004.07.036
12 Y. Tanimura, Nonperturbative expansion method for a quantum system coupled to a harmonic-oscillator bath, Phys. Rev. A 41(12), 6676 (1990)
https://doi.org/10.1103/PhysRevA.41.6676
13 Y. Tanimura, Stochastic Liouville, Langevin, Fokker–Planck, and master equation approaches to quantum dissipative systems, J. Phys. Soc. Jpn. 75(8), 082001 (2006)
https://doi.org/10.1143/JPSJ.75.082001
14 R. X. Xu, P. Cui, X. Q. Li, Y. Mo, and Y. J. Yan, Exact quantum master equation via the calculus on path integrals, J. Chem. Phys. 122(4), 041103 (2005)
https://doi.org/10.1063/1.1850899
15 R. X. Xu and Y. J. Yan, Dynamics of quantum dissipation systems interacting with bosonic canonical bath: Hierarchical equations of motion approach, Phys. Rev. E 75(3), 031107 (2007)
https://doi.org/10.1103/PhysRevE.75.031107
16 J. J. Ding, J. Xu, J. Hu, R. X. Xu, and Y. J. Yan, Optimized hierarchical equations of motion theory for Drude dissipation and efficient implementation to nonlinear spectroscopies, J. Chem. Phys. 135(16), 164107 (2011)
https://doi.org/10.1063/1.3653479
17 J. J. Ding, R. X. Xu, and Y. J. Yan, Optimizing hierarchical equations of motion for quantum dissipation and quantifying quantum bath effects on quantum transfer mechanisms, J. Chem. Phys. 136(22), 224103 (2012)
https://doi.org/10.1063/1.4724193
18 J. S. Jin, X. Zheng, and Y. J. Yan, Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach, J. Chem. Phys. 128(23), 234703 (2008)
https://doi.org/10.1063/1.2938087
19 Q. Shi, L. P. Chen, G. J. Nan, R. X. Xu, and Y. J. Yan, Electron transfer dynamics: Zusman equation versus exact theory, J. Chem. Phys. 130(16), 164518 (2009)
https://doi.org/10.1063/1.3125003
20 K. B. Zhu, R. X. Xu, H. Y. Zhang, J. Hu, and Y. J. Yan, Hierarchical dynamics of correlated system-environment coherence and optical spectroscopy, J. Phys. Chem. B 115(18), 5678 (2011)
https://doi.org/10.1021/jp2002244
21 Y. J. Yan, Theory of open quantum systems with bath of electrons and phonons and spins: Many-dissipaton density matrixes approach, J. Chem. Phys. 140(5), 054105 (2014)
https://doi.org/10.1063/1.4863379
22 H. D. Zhang, R. X. Xu, X. Zheng, and Y. J. Yan, Nonperturbative spin-boson and spin-spin dynamics and nonlinear Fano interferences: A unified dissipaton theory based study, J. Chem. Phys. 142(2), 024112 (2015)
https://doi.org/10.1063/1.4905494
23 J. S. Jin, S. K. Wang, X. Zheng, and Y. J. Yan, Current noise spectra and mechanisms with dissipaton equation of motion theory, J. Chem. Phys. 142(23), 234108 (2015)
https://doi.org/10.1063/1.4922712
24 S. Mukamel, The Principles of Nonlinear Optical Spectroscopy, New York: Oxford University Press, 1995
25 Y. J. Yan and S. Mukamel, Electronic dephasing, vibrational relaxation, and solvent friction in molecular nonlinear optical lineshapes, J. Chem. Phys. 89(8), 5160 (1988)
https://doi.org/10.1063/1.455634
26 A. O. Caldeira and A. J. Leggett, Quantum tunnelling in a dissipative system, Ann. Phys. 1983, 149: 374 [Erratum: 153, 445 (1984)]
https://doi.org/10.1016/0003-4916(83)90202-6
27 A. O. Caldeira and A. J. Leggett, Path integral approach to quantum Brownian motion, Physica A 121(3), 587 (1983)
https://doi.org/10.1016/0378-4371(83)90013-4
28 J. Hu, R. X. Xu, and Y. J. Yan, Padé spectrum decomposition of Fermi function and Bose function, J. Chem. Phys. 133(10), 101106 (2010)
https://doi.org/10.1063/1.3484491
29 J. Hu, M. Luo, F. Jiang, R. X. Xu, and Y. J. Yan, Padé spectrum decompositions of quantum distribution functions and optimal hierarchial equations of motion construction for quantum open systems, J. Chem. Phys. 134(24), 244106 (2011)
https://doi.org/10.1063/1.3602466
30 R. X. Xu, B. L. Tian, J. Xu, Q. Shi, and Y. J. Yan, Hierarchical quantum master equation with semiclassical Drude dissipation, J. Chem. Phys. 131(21), 214111 (2009)
https://doi.org/10.1063/1.3268922
31 B. L. Tian, J. J. Ding, R. X. Xu, and Y. J. Yan, Biexponential theory of Drude dissipation via hierarchical quantum master equation, J. Chem. Phys. 133(11), 114112 (2010)
https://doi.org/10.1063/1.3491270
32 H. D. Zhang and Y. J. Yan, Onsets of hierarchy truncation and self-consistent Born approximation with quantum mechanics prescriptions invariance, J. Chem. Phys. 143(21), 214112 (2015)
https://doi.org/10.1063/1.4936831
33 X. Zheng, R. X. Xu, J. Xu, J. S. Jin, J. Hu, and Y. J. Yan, Hierarchical equations of motion for quantum dissipation and quantum transport, Prog. Chem. 2012, 24(06): 1129,
34 P. Cui, X. Q. Li, J. S. Shao, and Y. J. Yan, Quantum transport from the perspective of quantum open systems, Phys. Lett. A 357(6), 449 (2006)
https://doi.org/10.1016/j.physleta.2006.04.075
35 J. S. Jin, J. Li, Y. Liu, X. Q. Li, and Y. J. Yan, Improved master equation approach to quantum transport: From Born to self-consistent Born approximation, J. Chem. Phys. 140(24), 244111 (2014)
https://doi.org/10.1063/1.4884390
36 D. Hou, S. K. Wang, R. L. Wang, L. Z. Ye, R. X. Xu, X. Zheng, and Y. J. Yan, Improving the efficiency of hierarchical equations of motion approach and application to coherent dynamics in Aharonov–Bohm interferometers, J. Chem. Phys. 142(10), 104112 (2015)
https://doi.org/10.1063/1.4914514
37 Y. Tanimura and P. G. Wolynes, Quantum and classical Fokker-Planck equations for a Guassian–Markovian noise bath, Phys. Rev. A 43(8), 4131 (1991)
https://doi.org/10.1103/PhysRevA.43.4131
38 X. Q. Li and Y. J. Yan, Quantum master equation scheme of time-dependent density functional theory to time-dependent transport in nanoelectronic devices, Phys. Rev. B 75(7), 075114 (2007)
https://doi.org/10.1103/PhysRevB.75.075114
39 Y. Tanimura, Real-time and imaginary-time quantum hierarchal Fokker–Planck equations, J. Chem. Phys. 142(14), 144110 (2015)
https://doi.org/10.1063/1.4916647
40 L. H. Ryder, Quantum Field Theory, 2nd Ed., Cambridge: Cambridge University Press, 1996
https://doi.org/10.1017/CBO9780511813900
41 H. D. Zhang, J. Xu, R. X. Xu, and Y. J. Yan, Modified Zusman qquation for quantum solvation dynamics and rate processes, in: Reaction Rate Constant Computations: Theories and Applications, London: edited by K.-L. Han and T.-S. Chu, pp. 319–336, Ch. 13, RSC Theoretical and Computational Chemistry Series No.6, 2014,
https://doi.org/10.1039/9781849737753-00319
42 X. Zheng, J. S. Jin, and Y. J. Yan, Dynamic electronic response of a quantum dot driven by time-dependent voltage, J. Chem. Phys. 129(18), 184112 (2008)
https://doi.org/10.1063/1.3010886
43 X. Zheng, J. S. Jin, and Y. J. Yan, Dynamic Coulomb blockade in single-lead quantum dots, New J. Phys. 10(9), 093016 (2008)
https://doi.org/10.1088/1367-2630/10/9/093016
44 X. Zheng, J. Y. Luo, J. S. Jin, and Y. J. Yan, Complex non-Markovian effect on time-dependent quantum transport, J. Chem. Phys. 130(12), 124508 (2009)
https://doi.org/10.1063/1.3095424
45 F. Jiang, J. S. Jin, S. K. Wang, and Y. J. Yan, Inelastic electron transport through mesoscopic systems: Heating versus cooling and sequential tunneling versus cotunneling processes, Phys. Rev. B 85(24), 245427 (2012)
https://doi.org/10.1103/PhysRevB.85.245427
46 S. K. Wang, X. Zheng, J. S. Jin, and Y. J. Yan, Hierarchical Liouville-space approach to nonequilibrium dynamic properties of quantum impurity systems, Phys. Rev. B 88(3), 035129 (2013)
https://doi.org/10.1103/PhysRevB.88.035129
47 X. Zheng, Y. J. Yan, and M. Di Ventra, Kondo memory in driven strongly correlated quantum dots, Phys. Rev. Lett. 111(8), 086601 (2013)
https://doi.org/10.1103/PhysRevLett.111.086601
48 L. Z. Ye, D. Hou, R. L. Wang, D. W. Cao, X. Zheng, and Y. J. Yan, Thermopower of few-electron quantum dots with Kondo correlations, Phys. Rev. B 90(16), 165116 (2014)
https://doi.org/10.1103/PhysRevB.90.165116
49 Z. H. Li, N. H. Tong, X. Zheng, D. Hou, J. H. Wei, J. Hu, and Y. J. Yan, Hierarchical Liouville-space approach for accurate and universal characterization of quantum impurity systems, Phys. Rev. Lett. 109(26), 266403 (2012)
https://doi.org/10.1103/PhysRevLett.109.266403
50 D. Hou, R. Wang, X. Zheng, N. H. Tong, J. H. Wei, and Y. J. Yan, Hierarchical equations of motion for impurity solver in dynamical mean-field theory, Phys. Rev. B 90(4), 045141 (2014)
https://doi.org/10.1103/PhysRevB.90.045141
51 T. Ozaki, Continued fraction representation of the Fermi-Dirac function for large-scale electronic structure calculations, Phys. Rev. B 75(3), 035123 (2007)
https://doi.org/10.1103/PhysRevB.75.035123
52 P. W. Anderson, Localized magnetic states in metals, Phys. Rev. 124(1), 41 (1961)
https://doi.org/10.1103/PhysRev.124.41
53 Y. Meir, N. S. Wingreen, and P. A. Lee, Low-temperature transport through a quantum dot: The Anderson model out of equilibrium, Phys. Rev. Lett. 70(17), 2601 (1993)
https://doi.org/10.1103/PhysRevLett.70.2601
54 J. Xu, R. X. Xu, D. Abramavicius, H. D. Zhang, and Y. J. Yan, Advancing hierarchical equations of motion for efficient evaluation of coherent two-dimensional spectroscopy, Chin. J. Chem. Phys. 24(5), 497 (2011)
https://doi.org/10.1088/1674-0068/24/05/497-506
55 J. Xu, H. D. Zhang, R. X. Xu, and Y. J. Yan, Correlated driving and dissipation in two-dimensional spectroscopy, J. Chem. Phys. 138(2), 024106 (2013)
https://doi.org/10.1063/1.4773472
56 R. W. Freund and N. M. Nachtigal, QMR: A quasiminimal residual method for non-Hermitian linear systems, Numer. Math. 60(1), 315 (1991)
https://doi.org/10.1007/BF01385726
57 R. W. Freund, A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems, SIAM J. Sci. Comput. 14(2), 470 (1993)
https://doi.org/10.1137/0914029
58 G. Stefanucci, Bound states in ab initio approaches to quantum transport: A time-dependent formulation, Phys. Rev. B 75(19), 195115 (2007)
https://doi.org/10.1103/PhysRevB.75.195115
59 Y. Mo, R. X. Xu, P. Cui, and Y. J. Yan, Correlation and response functions with non-Markovian dissipation: A reduced Liouville-space theory, J. Chem. Phys. 122(8), 084115 (2005)
https://doi.org/10.1063/1.1853353
60 Y. X. Cheng, W. J. Hou, Y. D. Wang, Z. H. Li, J. H. Wei, and Y. J. Yan, Time-dependent transport through quantum-impurity systems with Kondo resonance, New J. Phys. 17(3), 033009 (2015)
https://doi.org/10.1088/1367-2630/17/3/033009
61 J. Rammer and H. Smith, Quantum field-theoretical methods in transport theory of metals, Rev. Mod. Phys. 58(2), 323 (1986)
https://doi.org/10.1103/RevModPhys.58.323
62 H. Haug and A. P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, 2nd Ed., Berlin: Springer, 2007
63 A. Croy and U. Saalmann, Propagation scheme for nonequilibrium dynamics of electron transport in nanoscale devices, Phys. Rev. B 80(24), 245311 (2009)
https://doi.org/10.1103/PhysRevB.80.245311
64 J. S. Wang, B. K. Agarwalla, H. Li, and J. Thingna, Nonequilibrium Green’s function method for quantum thermal transport, Front. Phys. 9(6), 673 (2014)
https://doi.org/10.1007/s11467-013-0340-x
65 W. Ji, H. Q. Xu, and H. Guo, Quantum description of transport phenomena: Recent progress, Front. Phys. 9(6), 671 (2014)
https://doi.org/10.1007/s11467-014-0458-5
66 K. G. Wilson, The renormalization group: Critical phenomena and Kondo problem, Rev. Mod. Phys. 47(4), 773 (1975)
https://doi.org/10.1103/RevModPhys.47.773
67 R. Bulla, T. A. Costi, and T. Pruschke, Numerical renormalization group method for quantum impurity systems, Rev. Mod. Phys. 80(2), 395 (2008)
https://doi.org/10.1103/RevModPhys.80.395
[1] Qiang Wang, Jian-Wei Li, Bin Wang, Yi-Hang Nie. First-principles investigation of quantum transport in GeP3 nanoribbon-based tunneling junctions[J]. Front. Phys. , 2018, 13(3): 138501-.
[2] Shmuel Gurvitz. Wave-function approach to Master equations for quantum transport and measurement[J]. Front. Phys. , 2017, 12(4): 120303-.
[3] Pei-Yun Yang,Wei-Min Zhang. Master equation approach to transient quantum transport in nanostructures[J]. Front. Phys. , 2017, 12(4): 127204-.
[4] Yun-An Yan,Jiushu Shao. Stochastic description of quantum Brownian dynamics[J]. Front. Phys. , 2016, 11(4): 110309-110309.
[5] Dazhi Xu,Jianshu Cao. Non-canonical distribution and non-equilibrium transport beyond weak system-bath coupling regime: A polaron transformation approach[J]. Front. Phys. , 2016, 11(4): 110308-110308.
[6] Xin-Qi Li. Number-resolved master equation approach to quantum measurement and quantum transport[J]. Front. Phys. , 2016, 11(4): 110307-.
[7] Xiao-Fei Li, Yi Luo. Conductivity of carbon-based molecular junctions from ab-initio methods[J]. Front. Phys. , 2014, 9(6): 748-759.
[8] Yanho Kwok, Yu Zhang, GuanHua Chen. Time-dependent density functional theory for quantum transport[J]. Front. Phys. , 2014, 9(6): 698-710.
[9] Ning Zhan-Yu(宁展宇), Qiao Jing-Si(乔婧思), Ji Wei(季威), Guo Hong(郭鸿). Correlation of interfacial bonding mechanism and equilibrium conductance of molecular junctions[J]. Front. Phys. , 2014, 9(6): 780-788.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed