|
|
Graphene-plasmon polaritons: From fundamental properties to potential applications |
Sanshui Xiao1,2,*( ),Xiaolong Zhu3,Bo-Hong Li1,2,N. Asger Mortensen1,2,*( ) |
1. Department of Photonics Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark 2. Center for Nanostructured Graphene, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark 3. Department of Micro and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark |
|
|
Abstract With unique possibilities for controlling light in nanoscale devices, graphene plasmonics has opened new perspectives to the nanophotonics community with potential applications in metamaterials, modulators, photodetectors, and sensors. In this paper, we briefly review the recent exciting progress in graphene plasmonics. We begin with a general description of the optical properties of graphene, particularly focusing on the dispersion of graphene-plasmon polaritons. The dispersion relation of graphene-plasmon polaritons of spatially extended graphene is expressed in terms of the local response limit with an intraband contribution. With this theoretical foundation of graphene-plasmon polaritons, we then discuss recent exciting progress, paying specific attention to the following topics: excitation of graphene plasmon polaritons, electron-phonon interactions in graphene on polar substrates, and tunable graphene plasmonics with applications in modulators and sensors. Finally, we address some of the apparent challenges and promising perspectives of graphene plasmonics.
|
Keywords
graphene
plasmonics
graphene-plasmon polariton
plasmon-phonon interaction
tunability
|
Corresponding Author(s):
Sanshui Xiao,N. Asger Mortensen
|
Online First Date: 22 February 2016
Issue Date: 29 April 2016
|
|
1 |
S. A. Maier, Plasmonics: Fundamentals and Applications, New York: Springer, 2007
|
2 |
M. L. Brongersma, Introductory lecture: Nanoplasmonics, Faraday Discuss. 178, 9 (2015)
https://doi.org/10.1039/C5FD90020D
pmid: 25968246
|
3 |
J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, Plasmonics for extreme light concentration and manipulation, Nat. Mater. 9(3), 193 (2010)
https://doi.org/10.1038/nmat2630
pmid: 20168343
|
4 |
Editorial, Focusing in on applications, Nature Nanotechnol. 10, 1 (2015)
https://doi.org/10.1038/nnano.2014.332
|
5 |
A. Baev, P. N. Prasad, H. Ågren, M. Samoć, and M. Wegener, Metaphotonics: An emerging field with opportunities and challenges, Phys. Rep. 594, 1 (2015)
https://doi.org/10.1016/j.physrep.2015.07.002
|
6 |
D. K. Gramotnev and S. I. Bozhevolnyi, Plasmonics beyond the diffraction limit, Nat. Photonics 4(2), 83 (2010)
https://doi.org/10.1038/nphoton.2009.282
|
7 |
D. K. Gramotnev and S. I. Bozhevolnyi, Nanofocusing of electromagnetic radiation, Nat. Photonics 8, 13 (2014)
https://doi.org/10.1038/nphoton.2013.232
|
8 |
S. Xiao and N. A. Mortensen, Surface-plasmon-polariton-induced suppressed transmission through ultrathin metal disk arrays, Opt. Lett. 36(1), 37 (2011)
https://doi.org/10.1364/OL.36.000037
pmid: 21209679
|
9 |
S. Xiao, J. Zhang, L. Peng, C. Jeppesen, R. Malureanu, A. Kristensen, and N. A. Mortensen, Nearly zero transmission through periodically modulated ultrathin metal films, Appl. Phys. Lett. 97(7), 071116 (2010)
https://doi.org/10.1063/1.3481397
|
10 |
C. L. C. Smith, N. Stenger, A. Kristensen, N. A. Mortensen, and S. I. Bozhevolnyi, Gap and channeled plasmons in tapered grooves: A review, Nanoscale 7(21), 9355 (2015)
https://doi.org/10.1039/C5NR01282A
pmid: 25965100
|
11 |
S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, Channel plasmon subwavelength waveguide components including interferometers and ring resonators, Nature 440(7083), 508 (2006)
https://doi.org/10.1038/nature04594
pmid: 16554814
|
12 |
D. Ansell, I. P. Radko, Z. Han, F. J. Rodriguez, S. I. Bozhevolnyi, and A. N. Grigorenko, Hybrid graphene plasmonic waveguide modulators, Nat. Commun. 6, 8846 (2015)
https://doi.org/10.1038/ncomms9846
pmid: 26554944
|
13 |
S. Xiao, L. Liu, and M. Qiu, Resonator channel drop filters in a plasmon-polaritons metal, Opt. Express 14(7), 2932 (2006)
https://doi.org/10.1364/OE.14.002932
pmid: 19516431
|
14 |
H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering, Phys. Rev. Lett. 83(21), 4357 (1999)
https://doi.org/10.1103/PhysRevLett.83.4357
|
15 |
D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, A plasmonic “antenna-in-box” platform for enhanced single-molecule analysis at micromolar concentrations, Nat. Nanotechnol. 8(7), 512 (2013)
https://doi.org/10.1038/nnano.2013.98
pmid: 23748196
|
16 |
S. Kawata, Y. Inouye, and P. Verma, Plasmonics for near-field nano-imaging and superlensing, Nat. Photonics 3(7), 388 (2009)
https://doi.org/10.1038/nphoton.2009.111
|
17 |
F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, Wide field super-resolution surface imaging through plasmonic structured illumination microscopy, Nano Lett. 14(8), 4634 (2014)
https://doi.org/10.1021/nl501695c
pmid: 25014211
|
18 |
H. A. Atwater and A. Polman, Plasmonics for improved photovoltaic devices, Nat. Mater. 9(3), 205 (2010)
https://doi.org/10.1038/nmat2629
pmid: 20168344
|
19 |
S. Xiao, E. Stassen, and N. A. Mortensen, Ultrathinsilicon solar cells with enhanced photocurrentsassisted by plasmonic nanostructures, J. Nanophot. 6, 061503 (2012)
https://doi.org/10.1117/1.JNP.6.061503
|
20 |
K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, Printing colour at the optical diffraction limit, Nat. Nanotechnol. 7(9), 557 (2012)
https://doi.org/10.1038/nnano.2012.128
pmid: 22886173
|
21 |
J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, Plasmonic metasurfaces for coloration of plastic consumer products, Nano Lett. 14(8), 4499 (2014)
https://doi.org/10.1021/nl5014986
pmid: 25003515
|
22 |
X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, Plasmonic colour laser printing, Nat. Nanotechnol. (2016)
https://doi.org/10.1038/nnano.2015.285
|
23 |
J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Biosensing with plasmonic nanosensors, Nat. Mater. 7(6), 442 (2008)
https://doi.org/10.1038/nmat2162
pmid: 18497851
|
24 |
M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, A graphene-based broadband optical modulator,Nature 474(7349), 64 (2011)
https://doi.org/10.1038/nature10067
pmid: 21552277
|
25 |
A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, , Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, Nanoscale 7(11), 4598 (2015)
https://doi.org/10.1039/C4NR01600A
pmid: 25707682
|
26 |
A. N. Grigorenko, M. Polini, and K. S. Novoselov, Graphene plasmonics, Nat. Photonics 6, 749 (2012)
https://doi.org/10.1038/nphoton.2012.262
|
27 |
Y. V. Bludov, A. Ferreira, N. M. R. Peres, and M. I. Vasilevskiy, A primer on surface plasmon-polaritons in graphene, Int. J. Mod. Phys. B 27(10), 1341001 (2013)
https://doi.org/10.1142/S0217979213410014
|
28 |
F. J. García de Abajo, Graphene plasmonics: Challenges and opportunities, ACS Photonics 1(3), 135 (2014)
https://doi.org/10.1021/ph400147y
|
29 |
T. Low and P. Avouris, Graphene plasmonics for terahertz to mid-infrared applications, ACS Nano 8(2), 1086 (2014)
https://doi.org/10.1021/nn406627u
pmid: 24484181
|
30 |
A. Vakil and N. Engheta, Transformation optics using graphene, Science 332(6035), 1291 (2011)
https://doi.org/10.1126/science.1202691
pmid: 21659598
|
31 |
H. Raether, Surface Plasmons on Smooth and Rough Surfaces on Gratings, Berlin:Springer, 1988
|
32 |
Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, Effective electro-optical modulation with high extinction ratio by a graphene-silicon microring resonator, Nano Lett. 15(7), 4393 (2015)
https://doi.org/10.1021/acs.nanolett.5b00630
pmid: 26042835
|
33 |
C. T. Phare, Y.-H. D. Lee, J. Cardenas, and M. Lipson, Graphene electro-optic modulator with 30 GHz bandwidth, Nat. Photonics 9, 511 (2015)
https://doi.org/10.1038/nphoton.2015.122
|
34 |
I. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. de Fazio,A. Eiden, J. Khurgin, J. Shappir, U. Levy, and A. C. Ferrari,On-chip integrated, silicon-graphene plasmonic Schottky photodetector, with high responsivity and avalanche photogain, arXiv: 1512.08153
|
35 |
F. H. Koppens, D. E. Chang, and F. J. García de Abajo, Graphene plasmonics: A platform for strong light-matter interactions, Nano Lett. 11(8), 3370 (2011)
https://doi.org/10.1021/nl201771h
pmid: 21766812
|
36 |
S. Thongrattanasiri, A. Manjavacas, and F. J. García de Abajo, Quantum finite-size effects in graphene plasmons, ACS Nano 6(2), 1766 (2012)
https://doi.org/10.1021/nn204780e
pmid: 22217250
|
37 |
T. Christensen, W. Wang, A.-P. Jauho, M. Wubs, and N. A.Mortensen, Classical and quantum plasmonics in graphene nanodisks: The role of edge states, Phys. Rev. B 90, 241414(R) (2014)
https://doi.org/10.1103/PhysRevB.90.241414
|
38 |
S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, Switching terahertz waves with gate-controlled active graphene metamaterials, Nat. Mater. 11(11), 936 (2012)
https://doi.org/10.1038/nmat3433
pmid: 23023552
|
39 |
B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, Broadband graphene terahertz modulators enabled by intraband transitions, Nat. Commun. 3, 780 (2012)
https://doi.org/10.1038/ncomms1787
pmid: 22510685
|
40 |
G. Liang, X. Hu, X. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, Integrated terahertz graphene modulator with 100% modulation depth, ACS Photonics 2(11), 1559 (2015)
https://doi.org/10.1021/acsphotonics.5b00317
|
41 |
L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, Graphene plasmonics for tunable terahertz metamaterials, Nat. Nanotechnol. 6(10), 630 (2011)
https://doi.org/10.1038/nnano.2011.146
pmid: 21892164
|
42 |
A. Marini, I. Silveiro, and F. J. García de Abajo,Molecular sensing with tunable graphene plasmons, ACS Photonics 2(7), 876 (2015)
https://doi.org/10.1021/acsphotonics.5b00067
|
43 |
D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, Mid-infrared plasmonic biosensing with graphene, Science 349(6244), 165 (2015)
https://doi.org/10.1126/science.aab2051
pmid: 26160941
|
44 |
C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, Controlling inelastic light scattering quantum pathways in graphene, Nature 471(7340), 617 (2011)
https://doi.org/10.1038/nature09866
pmid: 21412234
|
45 |
I. Khrapach, F. Withers, T. H. Bointon, D. K. Polyushkin, W. L. Barnes, S. Russo, and M. F. Craciun, Novel highly conductive and transparent graphene-based conductors, Adv. Mater. 24(21), 2844 (2012)
https://doi.org/10.1002/adma.201200489
pmid: 22535615
|
46 |
T. Christensen, From classical to quantum plasmonics in three and two dimensions, PhD Thesis, Technical University of Denmark, 2015
|
47 |
A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, Quasiparticle dynamics in graphene, Nat. Phys. 3(1), 36 (2007)
https://doi.org/10.1038/nphys477
|
48 |
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
https://doi.org/10.1103/RevModPhys.81.109
|
49 |
R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Fine structure constant defines visual transparency of graphene, Science 320(5881), 1308 (2008)
https://doi.org/10.1126/science.1156965
pmid: 18388259
|
50 |
S. A. Mikhailov and K. Ziegler, New electromagnetic mode in graphene, Phys. Rev. Lett. 99(1), 016803 (2007)
https://doi.org/10.1103/PhysRevLett.99.016803
pmid: 17678180
|
51 |
M. Jablan, H. Buljan, and M. Soljačić, Plasmonics in graphene at infrared frequencies, Phys. Rev. B 80(24), 245435 (2009)
https://doi.org/10.1103/PhysRevB.80.245435
|
52 |
B. Wunsch, T. Stauber, F. Sols, and F. Guinea, Dynamical polarization of graphene at finite doping, New J. Phys. 8(12), 318 (2006)
https://doi.org/10.1088/1367-2630/8/12/318
|
53 |
E. H. Hwang and S. Das Sarma, Dielectric function, screening, and plasmons in two-dimensional graphene, Phys. Rev. B 75(20), 205418 (2007)
https://doi.org/10.1103/PhysRevB.75.205418
|
54 |
L. A. Falkovsky and A. A. Varlamov, Space-time dispersion of graphene conductivity, Eur. Phys. J. B 56(4), 281 (2007)
https://doi.org/10.1140/epjb/e2007-00142-3
|
55 |
S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. A. Mortensen, Nonlocal optical response in metallic nanostructures, J. Phys.: Condens. Matter 27(18), 183204 (2015)
https://doi.org/10.1088/0953-8984/27/18/183204
pmid: 25893883
|
56 |
J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, Optical nano-imaging of gate-tunable graphene plasmons, Nature 487(7405), 77 (2012)
pmid: 22722861
|
57 |
Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, Graphene surface plasmons at the near-infrared optical regime, Sci. Rep. 4, 6559 (2014)
https://doi.org/10.1038/srep06559
pmid: 25297570
|
58 |
X. Zhu, W. Yan, P. U. Jepsen, O. Hansen, N. A. Mortensen, and S. Xiao, Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating, Appl. Phys. Lett. 102(13), 131101 (2013)
https://doi.org/10.1063/1.4799173
|
59 |
M. Farhat, S. Guenneau, and H. Bağcı, Exciting graphene surface plasmon polaritons through light and sound interplay, Phys. Rev. Lett. 111(23), 237404 (2013)
https://doi.org/10.1103/PhysRevLett.111.237404
pmid: 24476303
|
60 |
H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, Tunable infrared plasmonic devices using graphene/insulator stacks, Nat. Nanotechnol. 7(5), 330 (2012)
https://doi.org/10.1038/nnano.2012.59
pmid: 22522668
|
61 |
Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, Gate-tuning of graphene plasmons revealed by infrared nano-imaging, Nature 487(7405), 82 (2012)
https://doi.org/10.1038/nature11253
pmid: 22722866
|
62 |
Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S. McLeod, C. Wang, M. K. Stewart, Z.Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, Infrared nanoscopy of Dirac plasmons at the graphene-SiO2 interface, Nano Lett. 11(11), 4701 (2011)
https://doi.org/10.1021/nl202362d
pmid: 21972938
|
63 |
G. X. Ni, H. Wang, J. S. Wu, Z. Fei, M. D. Goldflam, F. Keilmann, B. Özyilmaz, A. H. Castro Neto, X. M. Xie, M. M. Fogler, and D. N. Basov, Plasmons in graphene Moiré superlattices, Nat. Mater. 14(12), 1217 (2015)
https://doi.org/10.1038/nmat4425
pmid: 26413987
|
64 |
E. Yoxall, M. Schnell, A. Y. Nikitin, O. Txoperena, A. Woessner, M. B. Lundeberg, F. Casanova, L. E. Hueso, F. H. L. Koppens, and R. Hillenbrand, Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity, Nat. Photonics 9(10), 674 (2015)
https://doi.org/10.1038/nphoton.2015.166
|
65 |
P. Li, M. Lewin, A. V. Kretinin, J. D. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing, Nat. Commun. 6, 7507 (2015)
https://doi.org/10.1038/ncomms8507
|
66 |
P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns, Science 344(6190), 1369 (2014)
https://doi.org/10.1126/science.1253202
pmid: 24855026
|
67 |
A. Y. Nikitin, P. Alonso-González, and R. Hillenbrand, Efficient coupling of light to graphene plasmons by compressing surface polaritons with tapered bulk materials, Nano Lett. 14(5), 2896 (2014)
https://doi.org/10.1021/nl500943r
pmid: 24773123
|
68 |
K. Y. M. Yeung, J. Chee, H. Yoon, Y. Song, J. Kong, and D. Ham, Far-infrared graphene plasmonic crystals for plasmonic band engineering, Nano Lett. 14(5), 2479 (2014)
https://doi.org/10.1021/nl500158y
pmid: 24678885
|
69 |
W. Gao, J. Shu, C. Qiu, and Q. Xu, Excitation of plasmonic waves in graphene by guided-mode resonances, ACS Nano 6(9), 7806 (2012)
https://doi.org/10.1021/nn301888e
pmid: 22862147
|
70 |
W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, Excitation and active control of propagating surface plasmon polaritons in graphene, Nano Lett. 13(8), 3698 (2013)
https://doi.org/10.1021/nl401591k
pmid: 23895501
|
71 |
J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea, Coupling light into graphene plasmons through surface acoustic waves, Phys. Rev. Lett. 111(23), 237405 (2013)
https://doi.org/10.1103/PhysRevLett.111.237405
pmid: 24476304
|
72 |
T. Christensen, A. P. Jauho, M. Wubs, and N. A. Mortensen, Localized plasmons in graphene-coated nanospheres, Phys. Rev. B 91(12), 125414 (2015)
https://doi.org/10.1103/PhysRevB.91.125414
|
73 |
W. Wang, B. Li, E. Stassen, N. A. Mortensen, and J. Christensen, Localized surface plasmons in vibrating grapheme nanodisks, Nanoscale, 2016, arXiv: 1502.00535
https://doi.org/10.1039/C5NR08812G
|
74 |
A. Reserbat-Plantey, K. G. Schädler, L. Gaudreau, G. Navickaite, J. Güttinger, D. Chang, C. Toninelli, A. Bachtold, and F. H. L. Koppens, Electromechanical control of nitrogen-vacancy defect emission using graphene NEMS, Nat. Commun. 7, 10218 (2016)
https://doi.org/10.1038/ncomms10218
|
75 |
D. Smirnova, S. H. Mousavi, Z. Wang, Y. S. Kivshar, and A. B. Khanikaev, Trapping and guiding surface plasmons in curved graphene landscapes, arXiv: 1508.02729
|
76 |
M. Jablan, M. Soljačić, and H. Buljan, Unconventional plasmon-phonon coupling in graphene, Phys. Rev. B 83(16), 161409 (2011)
https://doi.org/10.1103/PhysRevB.83.161409
|
77 |
Y. Liu and R. F. Willis, Plasmon-phonon strongly coupled mode in epitaxial graphene,Phys. Rev. B 81(8), 081406 (2010)
https://doi.org/10.1103/PhysRevB.81.081406
|
78 |
H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, Damping pathways of mid-infrared plasmons in graphene nanostructures, Nat. Photonics 7(5), 394 (2013)
https://doi.org/10.1038/nphoton.2013.57
|
79 |
X. Zhu, W. Wang, W. Yan, M. B. Larsen, P. Bøggild, T. G. Pedersen, S. Xiao, J. Zi, and N. A. Mortensen, Plasmon-phonon coupling in large-area graphene dot and antidot arrays fabricated by nanosphere lithography, Nano Lett. 14(5), 2907 (2014)
https://doi.org/10.1021/nl500948p
pmid: 24707792
|
80 |
V. W. Brar, M. S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L. B. Kim, M. Choi, and H. Atwater, Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures, Nano Lett. 14(7), 3876 (2014)
https://doi.org/10.1021/nl501096s
pmid: 24874205
|
81 |
K. Bolotin, K .Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Commun. 146(9-10), 351 (2008)
https://doi.org/10.1016/j.ssc.2008.02.024
|
82 |
S. Fratini and F. Guinea, Substrate-limited electron dynamics in graphene, Phys. Rev. B 77(19), 195415 (2008)
https://doi.org/10.1103/PhysRevB.77.195415
|
83 |
K. Hess and P. Vogl, Remote polar phonon scattering in silicon inversion layers, Solid State Commun. 30(12), 807 (1979)
https://doi.org/10.1016/0038-1098(79)90051-6
|
84 |
C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P.Kim, K. L. Shepard, and J. Hone, Boron nitride substrates for high-quality graphene electronics, Nat. Nanotechnol. 5(10), 722 (2010)
https://doi.org/10.1038/nnano.2010.172
pmid: 20729834
|
85 |
S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and F. Mauri, Breakdown of the adiabatic Born-Oppenheimer approximation in graphene, Nat. Mater. 6(3), 198 (2007)
https://doi.org/10.1038/nmat1846
pmid: 17293849
|
86 |
A. Mooradian and G. B. Wright, Observation of the interaction of plasmons with longitudinal optical phonons in GaAs, Phys. Rev. Lett. 16(22), 999 (1966)
https://doi.org/10.1103/PhysRevLett.16.999
|
87 |
E. H. Hwang, R. Sensarma, and S. Das Sarma, Plasmon-phonon coupling in graphene, Phys. Rev. B 82(19), 195406 (2010)
https://doi.org/10.1103/PhysRevB.82.195406
|
88 |
R. J. Koch, T. Seyller, and J. A. Schaefer, Strong phonon-plasmon coupled modes in the graphene/silicon carbide heterosystem, Phys. Rev. B 82(20), 201413 (2010)
https://doi.org/10.1103/PhysRevB.82.201413
|
89 |
I. Forbeaux, J. M. Themlin, and J. M. Debever, Heteroepitaxial graphite on 6H-SiC(0001): Interface formation through conduction-band electronic structure, Phys. Rev. B 58(24), 16396 (1998)
https://doi.org/10.1103/PhysRevB.58.16396
|
90 |
Y. Ou, X. Zhu, V. Jokubavicius, R.Yakimova, N. A. Mortensen, M. Syväjärvi, S. Xiao, and H. Ou, Broadband antireflection and light extraction enhancement in fluorescent SiC with nanodome structures, Sci. Rep. 4, 4662 (2014)
https://doi.org/10.1038/srep04662
pmid: 24722521
|
91 |
X. Zhu, Y. Ou, V. Jokubavicius, M. Syvajarvi, O. Hansen, H. Ou, N. A. Mortensen, and S. Xiao, Broadband light-extraction enhanced by arrays of whispering gallery resonators, Appl. Phys. Lett. 101(24), 241108 (2012)
https://doi.org/10.1063/1.4771124
|
92 |
X. Zhu, C. Zhang, X. Liu, O. Hansen, S. Xiao, N. A. Mortensen, and J. Zi, Evaporation of water droplets on “lock-and-key” structures with nanoscale features, Langmuir 28(25), 9201 (2012)
https://doi.org/10.1021/la301867q
pmid: 22662879
|
93 |
X. Zhu, F. Xie, L. Shi, X. Liu, N. A. Mortensen, S. Xiao, J. Zi, and W. Choy, Broadband enhancement of spontaneous emission in a photonic-plasmonic structure , Opt. Lett. 37(11), 2037 (2012)
https://doi.org/10.1364/OL.37.002037
pmid: 22660113
|
94 |
X. Zhu, S. Xiao, L. Shi, X. Liu, J. Zi, O. Hansen, and N. A. Mortensen, A stretch-tunable plasmonic structure with a polarization-dependent response, Opt. Express 20(5), 5237 (2012)
https://doi.org/10.1364/OE.20.005237
pmid: 22418330
|
95 |
Y. Li, H. Yan, D. B. Farmer, X. Meng, W. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers, Nano Lett. 14(3), 1573 (2014)
https://doi.org/10.1021/nl404824w
pmid: 24528250
|
96 |
I. D. Barcelos, A. R. Cadore, L. C. Campos, A. Malachias, K. Watanabe, T. Taniguchi, F. C. Maia, R. Freitas, and C. Deneke, Graphene/h-BN plasmon-phonon coupling and plasmon delocalization observed by infrared nano-spectroscopy, Nanoscale 7(27), 11620 (2015)
https://doi.org/10.1039/C5NR01056J
pmid: 26091534
|
97 |
V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, Highly confined tunable mid-infrared plasmonics in graphene nanoresonators, Nano Lett. 13(6), 2541 (2013)
https://doi.org/10.1021/nl400601c
pmid: 23621616
|
98 |
M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, Tunable terahertz hybrid metal-graphene plasmons, Nano Lett . 15(10), 7099 (2015)
https://doi.org/10.1021/acs.nanolett.5b03191
pmid: 26397718
|
99 |
M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, Plasmonic tunable metamaterial absorber as ultraviolet protection film, Appl. Phys. Lett. 104(4), 041103 (2014)
https://doi.org/10.1063/1.4863202
|
100 |
D. Franklin, Y. Chen, A.Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S. T. Wu, and D. Chanda, Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces, Nat. Commun. 6, 7337 (2015
https://doi.org/10.1038/ncomms8337
pmid: 26066375
|
101 |
A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, Real-time tunable lasing from plasmonic nanocavity arrays, Nat. Commun. 6, 6939 (2015)
https://doi.org/10.1038/ncomms7939
|
102 |
G. C.Dyer, G. R.Aizin, S. J.Allen, A. D.Grine, D.Bethke, J. L.Reno, and E. A. Shaner, Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals, Nat. Photonics 7(11), 925 (2013)
https://doi.org/10.1038/nphoton.2013.252
|
103 |
B. Fluegel, A. Mascarenhas, D. W. Snoke, L. N. Pfeiffer, and K. West, Plasmonic all-optical tunable wavelength shifter, Nat. Photonics 1(12), 701 (2007)
https://doi.org/10.1038/nphoton.2007.229
|
104 |
Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J.García de Abajo, Gated tunability and hybridization of localized plasmons in nanostructured graphene, ACS Nano 7(3), 2388 (2013)
https://doi.org/10.1021/nn3055835
pmid: 23390960
|
105 |
V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, Electronic modulation of infrared radiation in graphene plasmonic resonators, Nat. Commun. 6, 7032 (2015)
https://doi.org/10.1038/ncomms8032
pmid: 25948173
|
106 |
N. A. Mortensen, S. Xiao, and J. Pedersen, Liquid-infiltrated photonic crystals: Enhanced light-matter interactions for lab-on-a-chip applications, Microfluid. Nanofluidics 4(1), 117 (2008)
https://doi.org/10.1007/s10404-007-0203-2
|
107 |
L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms, Nano Lett. 6(9), 2060 (2006)
https://doi.org/10.1021/nl061286u
pmid: 16968025
|
108 |
C. Jeppesen, S. Xiao, N. A. Mortensen, and A. Kristensen, Metamaterial localized resonance sensors: Prospects and limitations, Opt. Express 18(24), 25075 (2010)
https://doi.org/10.1364/OE.18.025075
pmid: 21164853
|
109 |
M. Freitag, T. Low, W. Zhu, H. Yan, F. Xia, and P. Avouris, Photocurrent in graphene harnessed by tunable intrinsic plasmons, Nat. Commun. 4, 1951 (2013)
https://doi.org/10.1038/ncomms2951
pmid: 23727714
|
110 |
X. Zhu, L. Shi, M. S. Schmidt, A. Boisen, O. Hansen, J. Zi, S. Xiao, and N. A. Mortensen, Enhanced light-matter interactions in graphene-covered gold nanovoid arrays, Nano Lett. 13(10), 4690 (2013)
https://doi.org/10.1021/nl402120t
pmid: 24010940
|
111 |
J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, Electrical control of optical plasmon resonance with graphene, Nano Lett. 12(11), 5598 (2012)
https://doi.org/10.1021/nl302656d
pmid: 23025816
|
112 |
S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared, Nano Lett. 13(3), 1111 (2013)
https://doi.org/10.1021/nl304476b
pmid: 23398172
|
113 |
J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, Atomically precise bottom-up fabrication of graphene nanoribbons, Nature 466(7305), 470 (2010)
https://doi.org/10.1038/nature09211
pmid: 20651687
|
114 |
X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Chemically derived, ultrasmooth graphene nanoribbon semiconductors, Science 319(5867), 1229 (2008)
https://doi.org/10.1126/science.1150878
pmid: 18218865
|
115 |
S. Rasappa, J. M. Caridad, L. Schulte, A. Cagliani, D. Borah, M. A. Morris, P. Bøggild, and S.Ndoni, High quality sub-10 nm graphene nanoribbons by on-chip PS-b-PDMS block copolymer lithography, RSC Adv. 5, 66711 (2015)
https://doi.org/10.1039/C5RA11735F
|
116 |
W. Wang, T.Christensen, A. P.Jauho, K. S. Thygesen, M. Wubs, and N. A. Mortensen, Plasmonic eigenmodes in individual and bow-tie graphene nanotriangles, Sci. Rep. 5, 9535 (2015)
https://doi.org/10.1038/srep09535
pmid: 25856506
|
117 |
A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K.Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, Highly confined low-loss plasmons in graphene-boron nitride heterostructures, Nat. Mater. 14(4), 421 (2015)
https://doi.org/10.1038/nmat4169
pmid: 25532073
|
118 |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306, 666 (2004)
https://doi.org/10.1126/science.1102896
|
119 |
Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)
https://doi.org/10.1038/nature04235
pmid: 16281031
|
120 |
Y. Hao, M. S.Bharathi, L. Wang, Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B. Fallahazad, H. Ramanarayan, C. W. Magnuson, E. Tutuc, B. I. Yakobson, K. F. McCarty, Y. W. Zhang, P. Kim, J. Hone, L. Colombo, and R. S. Ruoff, The role of surface oxygen in the growth of large single-crystal graphene on copper, Science 342(6159), 720 (2013)
https://doi.org/10.1126/science.1243879
pmid: 24158906
|
121 |
T. Wu, X. Zhang, Q. Yuan, J. Xue, G. Lu, Z. Liu, H. Wang, H. Wang, F. Ding, Q. Yu, X. Xie, and M. Jiang, Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu-Ni alloys, Nat. Mater. 15(1), 43 (2016) PMID:26595118
https://doi.org/10.1038/nmat4477
|
122 |
J. L.Cheng, N. Vermeulen, and J. E. Sipe, Third order optical nonlinearity of graphene, New J. Phys. 16(5), 053014 (2014)
https://doi.org/10.1088/1367-2630/16/5/053014
|
123 |
N. M. R. Peres, Y. V. Bludov, J. E. Santos, A. P. Jauho, and M. I. Vasilevskiy, Optical bistability of graphene in the terahertz range, Phys. Rev. B 90(12), 125425 (2014)
https://doi.org/10.1103/PhysRevB.90.125425
|
124 |
D. A. Smirnova, I. V. Shadrivov, A. E. Miroshnichenko, A. I. Smirnov, and Y. S. Kivshar, Second-harmonic generation by a graphene nanoparticle, Phys. Rev. B 90(3), 035412 (2014)
https://doi.org/10.1103/PhysRevB.90.035412
|
125 |
T. Christensen, W. Yan, A.-P.Jauho, M. Wubs, and N. A. Mortensen, Kerr nonlinearity and plasmonic bistability in graphene nanoribbons, Phys. Rev. B 92, 121407(R) (2015)
https://doi.org/10.1103/PhysRevB.92.121407
|
126 |
J. D. Cox and F. Javier García de Abajo, Electrically tunable nonlinear plasmonics in graphene nanoislands, Nat. Commun. 5, 5725 (2014)
https://doi.org/10.1038/ncomms6725
pmid: 25500534
|
127 |
J. D. Cox and F. J. García de Abajo, Plasmon-enhanced nonlinear wave mixing in nanostructured graphene, ACS Photonics 2(2), 306 (2015)
https://doi.org/10.1021/ph500424a
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|