Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2016, Vol. 11 Issue (2) : 117801    https://doi.org/10.1007/s11467-016-0551-z
REVIEW ARTICLE
Graphene-plasmon polaritons: From fundamental properties to potential applications
Sanshui Xiao1,2,*(),Xiaolong Zhu3,Bo-Hong Li1,2,N. Asger Mortensen1,2,*()
1. Department of Photonics Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
2. Center for Nanostructured Graphene, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
3. Department of Micro and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
 Download: PDF(588 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

With unique possibilities for controlling light in nanoscale devices, graphene plasmonics has opened new perspectives to the nanophotonics community with potential applications in metamaterials, modulators, photodetectors, and sensors. In this paper, we briefly review the recent exciting progress in graphene plasmonics. We begin with a general description of the optical properties of graphene, particularly focusing on the dispersion of graphene-plasmon polaritons. The dispersion relation of graphene-plasmon polaritons of spatially extended graphene is expressed in terms of the local response limit with an intraband contribution. With this theoretical foundation of graphene-plasmon polaritons, we then discuss recent exciting progress, paying specific attention to the following topics: excitation of graphene plasmon polaritons, electron-phonon interactions in graphene on polar substrates, and tunable graphene plasmonics with applications in modulators and sensors. Finally, we address some of the apparent challenges and promising perspectives of graphene plasmonics.

Keywords graphene      plasmonics      graphene-plasmon polariton      plasmon-phonon interaction      tunability     
Corresponding Author(s): Sanshui Xiao,N. Asger Mortensen   
Online First Date: 22 February 2016    Issue Date: 29 April 2016
 Cite this article:   
Sanshui Xiao,Xiaolong Zhu,Bo-Hong Li, et al. Graphene-plasmon polaritons: From fundamental properties to potential applications[J]. Front. Phys. , 2016, 11(2): 117801.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-016-0551-z
https://academic.hep.com.cn/fop/EN/Y2016/V11/I2/117801
1 S. A. Maier, Plasmonics: Fundamentals and Applications, New York: Springer, 2007
2 M. L. Brongersma, Introductory lecture: Nanoplasmonics, Faraday Discuss. 178, 9 (2015)
https://doi.org/10.1039/C5FD90020D pmid: 25968246
3 J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, Plasmonics for extreme light concentration and manipulation, Nat. Mater. 9(3), 193 (2010)
https://doi.org/10.1038/nmat2630 pmid: 20168343
4 Editorial, Focusing in on applications, Nature Nanotechnol. 10, 1 (2015)
https://doi.org/10.1038/nnano.2014.332
5 A. Baev, P. N. Prasad, H. Ågren, M. Samoć, and M. Wegener, Metaphotonics: An emerging field with opportunities and challenges, Phys. Rep. 594, 1 (2015)
https://doi.org/10.1016/j.physrep.2015.07.002
6 D. K. Gramotnev and S. I. Bozhevolnyi, Plasmonics beyond the diffraction limit, Nat. Photonics 4(2), 83 (2010)
https://doi.org/10.1038/nphoton.2009.282
7 D. K. Gramotnev and S. I. Bozhevolnyi, Nanofocusing of electromagnetic radiation, Nat. Photonics 8, 13 (2014)
https://doi.org/10.1038/nphoton.2013.232
8 S. Xiao and N. A. Mortensen, Surface-plasmon-polariton-induced suppressed transmission through ultrathin metal disk arrays, Opt. Lett. 36(1), 37 (2011)
https://doi.org/10.1364/OL.36.000037 pmid: 21209679
9 S. Xiao, J. Zhang, L. Peng, C. Jeppesen, R. Malureanu, A. Kristensen, and N. A. Mortensen, Nearly zero transmission through periodically modulated ultrathin metal films, Appl. Phys. Lett. 97(7), 071116 (2010)
https://doi.org/10.1063/1.3481397
10 C. L. C. Smith, N. Stenger, A. Kristensen, N. A. Mortensen, and S. I. Bozhevolnyi, Gap and channeled plasmons in tapered grooves: A review, Nanoscale 7(21), 9355 (2015)
https://doi.org/10.1039/C5NR01282A pmid: 25965100
11 S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, Channel plasmon subwavelength waveguide components including interferometers and ring resonators, Nature 440(7083), 508 (2006)
https://doi.org/10.1038/nature04594 pmid: 16554814
12 D. Ansell, I. P. Radko, Z. Han, F. J. Rodriguez, S. I. Bozhevolnyi, and A. N. Grigorenko, Hybrid graphene plasmonic waveguide modulators, Nat. Commun. 6, 8846 (2015)
https://doi.org/10.1038/ncomms9846 pmid: 26554944
13 S. Xiao, L. Liu, and M. Qiu, Resonator channel drop filters in a plasmon-polaritons metal, Opt. Express 14(7), 2932 (2006)
https://doi.org/10.1364/OE.14.002932 pmid: 19516431
14 H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering, Phys. Rev. Lett. 83(21), 4357 (1999)
https://doi.org/10.1103/PhysRevLett.83.4357
15 D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, A plasmonic “antenna-in-box” platform for enhanced single-molecule analysis at micromolar concentrations, Nat. Nanotechnol. 8(7), 512 (2013)
https://doi.org/10.1038/nnano.2013.98 pmid: 23748196
16 S. Kawata, Y. Inouye, and P. Verma, Plasmonics for near-field nano-imaging and superlensing, Nat. Photonics 3(7), 388 (2009)
https://doi.org/10.1038/nphoton.2009.111
17 F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, Wide field super-resolution surface imaging through plasmonic structured illumination microscopy, Nano Lett. 14(8), 4634 (2014)
https://doi.org/10.1021/nl501695c pmid: 25014211
18 H. A. Atwater and A. Polman, Plasmonics for improved photovoltaic devices, Nat. Mater. 9(3), 205 (2010)
https://doi.org/10.1038/nmat2629 pmid: 20168344
19 S. Xiao, E. Stassen, and N. A. Mortensen, Ultrathinsilicon solar cells with enhanced photocurrentsassisted by plasmonic nanostructures, J. Nanophot. 6, 061503 (2012)
https://doi.org/10.1117/1.JNP.6.061503
20 K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, Printing colour at the optical diffraction limit, Nat. Nanotechnol. 7(9), 557 (2012)
https://doi.org/10.1038/nnano.2012.128 pmid: 22886173
21 J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, Plasmonic metasurfaces for coloration of plastic consumer products, Nano Lett. 14(8), 4499 (2014)
https://doi.org/10.1021/nl5014986 pmid: 25003515
22 X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, Plasmonic colour laser printing, Nat. Nanotechnol. (2016)
https://doi.org/10.1038/nnano.2015.285
23 J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Biosensing with plasmonic nanosensors, Nat. Mater. 7(6), 442 (2008)
https://doi.org/10.1038/nmat2162 pmid: 18497851
24 M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, A graphene-based broadband optical modulator,Nature 474(7349), 64 (2011)
https://doi.org/10.1038/nature10067 pmid: 21552277
25 A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, , Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, Nanoscale 7(11), 4598 (2015)
https://doi.org/10.1039/C4NR01600A pmid: 25707682
26 A. N. Grigorenko, M. Polini, and K. S. Novoselov, Graphene plasmonics, Nat. Photonics 6, 749 (2012)
https://doi.org/10.1038/nphoton.2012.262
27 Y. V. Bludov, A. Ferreira, N. M. R. Peres, and M. I. Vasilevskiy, A primer on surface plasmon-polaritons in graphene, Int. J. Mod. Phys. B 27(10), 1341001 (2013)
https://doi.org/10.1142/S0217979213410014
28 F. J. García de Abajo, Graphene plasmonics: Challenges and opportunities, ACS Photonics 1(3), 135 (2014)
https://doi.org/10.1021/ph400147y
29 T. Low and P. Avouris, Graphene plasmonics for terahertz to mid-infrared applications, ACS Nano 8(2), 1086 (2014)
https://doi.org/10.1021/nn406627u pmid: 24484181
30 A. Vakil and N. Engheta, Transformation optics using graphene, Science 332(6035), 1291 (2011)
https://doi.org/10.1126/science.1202691 pmid: 21659598
31 H. Raether, Surface Plasmons on Smooth and Rough Surfaces on Gratings, Berlin:Springer, 1988
32 Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, Effective electro-optical modulation with high extinction ratio by a graphene-silicon microring resonator, Nano Lett. 15(7), 4393 (2015)
https://doi.org/10.1021/acs.nanolett.5b00630 pmid: 26042835
33 C. T. Phare, Y.-H. D. Lee, J. Cardenas, and M. Lipson, Graphene electro-optic modulator with 30 GHz bandwidth, Nat. Photonics 9, 511 (2015)
https://doi.org/10.1038/nphoton.2015.122
34 I. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. de Fazio,A. Eiden, J. Khurgin, J. Shappir, U. Levy, and A. C. Ferrari,On-chip integrated, silicon-graphene plasmonic Schottky photodetector, with high responsivity and avalanche photogain, arXiv: 1512.08153
35 F. H. Koppens, D. E. Chang, and F. J. García de Abajo, Graphene plasmonics: A platform for strong light-matter interactions, Nano Lett. 11(8), 3370 (2011)
https://doi.org/10.1021/nl201771h pmid: 21766812
36 S. Thongrattanasiri, A. Manjavacas, and F. J. García de Abajo, Quantum finite-size effects in graphene plasmons, ACS Nano 6(2), 1766 (2012)
https://doi.org/10.1021/nn204780e pmid: 22217250
37 T. Christensen, W. Wang, A.-P. Jauho, M. Wubs, and N. A.Mortensen, Classical and quantum plasmonics in graphene nanodisks: The role of edge states, Phys. Rev. B 90, 241414(R) (2014)
https://doi.org/10.1103/PhysRevB.90.241414
38 S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, Switching terahertz waves with gate-controlled active graphene metamaterials, Nat. Mater. 11(11), 936 (2012)
https://doi.org/10.1038/nmat3433 pmid: 23023552
39 B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, Broadband graphene terahertz modulators enabled by intraband transitions, Nat. Commun. 3, 780 (2012)
https://doi.org/10.1038/ncomms1787 pmid: 22510685
40 G. Liang, X. Hu, X. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, Integrated terahertz graphene modulator with 100% modulation depth, ACS Photonics 2(11), 1559 (2015)
https://doi.org/10.1021/acsphotonics.5b00317
41 L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, Graphene plasmonics for tunable terahertz metamaterials, Nat. Nanotechnol. 6(10), 630 (2011)
https://doi.org/10.1038/nnano.2011.146 pmid: 21892164
42 A. Marini, I. Silveiro, and F. J. García de Abajo,Molecular sensing with tunable graphene plasmons, ACS Photonics 2(7), 876 (2015)
https://doi.org/10.1021/acsphotonics.5b00067
43 D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, Mid-infrared plasmonic biosensing with graphene, Science 349(6244), 165 (2015)
https://doi.org/10.1126/science.aab2051 pmid: 26160941
44 C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, Controlling inelastic light scattering quantum pathways in graphene, Nature 471(7340), 617 (2011)
https://doi.org/10.1038/nature09866 pmid: 21412234
45 I. Khrapach, F. Withers, T. H. Bointon, D. K. Polyushkin, W. L. Barnes, S. Russo, and M. F. Craciun, Novel highly conductive and transparent graphene-based conductors, Adv. Mater. 24(21), 2844 (2012)
https://doi.org/10.1002/adma.201200489 pmid: 22535615
46 T. Christensen, From classical to quantum plasmonics in three and two dimensions, PhD Thesis, Technical University of Denmark, 2015
47 A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, Quasiparticle dynamics in graphene, Nat. Phys. 3(1), 36 (2007)
https://doi.org/10.1038/nphys477
48 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
https://doi.org/10.1103/RevModPhys.81.109
49 R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Fine structure constant defines visual transparency of graphene, Science 320(5881), 1308 (2008)
https://doi.org/10.1126/science.1156965 pmid: 18388259
50 S. A. Mikhailov and K. Ziegler, New electromagnetic mode in graphene, Phys. Rev. Lett. 99(1), 016803 (2007)
https://doi.org/10.1103/PhysRevLett.99.016803 pmid: 17678180
51 M. Jablan, H. Buljan, and M. Soljačić, Plasmonics in graphene at infrared frequencies, Phys. Rev. B 80(24), 245435 (2009)
https://doi.org/10.1103/PhysRevB.80.245435
52 B. Wunsch, T. Stauber, F. Sols, and F. Guinea, Dynamical polarization of graphene at finite doping, New J. Phys. 8(12), 318 (2006)
https://doi.org/10.1088/1367-2630/8/12/318
53 E. H. Hwang and S. Das Sarma, Dielectric function, screening, and plasmons in two-dimensional graphene, Phys. Rev. B 75(20), 205418 (2007)
https://doi.org/10.1103/PhysRevB.75.205418
54 L. A. Falkovsky and A. A. Varlamov, Space-time dispersion of graphene conductivity, Eur. Phys. J. B 56(4), 281 (2007)
https://doi.org/10.1140/epjb/e2007-00142-3
55 S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. A. Mortensen, Nonlocal optical response in metallic nanostructures, J. Phys.: Condens. Matter 27(18), 183204 (2015)
https://doi.org/10.1088/0953-8984/27/18/183204 pmid: 25893883
56 J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, Optical nano-imaging of gate-tunable graphene plasmons, Nature 487(7405), 77 (2012)
pmid: 22722861
57 Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, Graphene surface plasmons at the near-infrared optical regime, Sci. Rep. 4, 6559 (2014)
https://doi.org/10.1038/srep06559 pmid: 25297570
58 X. Zhu, W. Yan, P. U. Jepsen, O. Hansen, N. A. Mortensen, and S. Xiao, Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating, Appl. Phys. Lett. 102(13), 131101 (2013)
https://doi.org/10.1063/1.4799173
59 M. Farhat, S. Guenneau, and H. Bağcı, Exciting graphene surface plasmon polaritons through light and sound interplay, Phys. Rev. Lett. 111(23), 237404 (2013)
https://doi.org/10.1103/PhysRevLett.111.237404 pmid: 24476303
60 H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, Tunable infrared plasmonic devices using graphene/insulator stacks, Nat. Nanotechnol. 7(5), 330 (2012)
https://doi.org/10.1038/nnano.2012.59 pmid: 22522668
61 Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, Gate-tuning of graphene plasmons revealed by infrared nano-imaging, Nature 487(7405), 82 (2012)
https://doi.org/10.1038/nature11253 pmid: 22722866
62 Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S. McLeod, C. Wang, M. K. Stewart, Z.Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, Infrared nanoscopy of Dirac plasmons at the graphene-SiO2 interface, Nano Lett. 11(11), 4701 (2011)
https://doi.org/10.1021/nl202362d pmid: 21972938
63 G. X. Ni, H. Wang, J. S. Wu, Z. Fei, M. D. Goldflam, F. Keilmann, B. Özyilmaz, A. H. Castro Neto, X. M. Xie, M. M. Fogler, and D. N. Basov, Plasmons in graphene Moiré superlattices, Nat. Mater. 14(12), 1217 (2015)
https://doi.org/10.1038/nmat4425 pmid: 26413987
64 E. Yoxall, M. Schnell, A. Y. Nikitin, O. Txoperena, A. Woessner, M. B. Lundeberg, F. Casanova, L. E. Hueso, F. H. L. Koppens, and R. Hillenbrand, Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity, Nat. Photonics 9(10), 674 (2015)
https://doi.org/10.1038/nphoton.2015.166
65 P. Li, M. Lewin, A. V. Kretinin, J. D. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing, Nat. Commun. 6, 7507 (2015)
https://doi.org/10.1038/ncomms8507
66 P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns, Science 344(6190), 1369 (2014)
https://doi.org/10.1126/science.1253202 pmid: 24855026
67 A. Y. Nikitin, P. Alonso-González, and R. Hillenbrand, Efficient coupling of light to graphene plasmons by compressing surface polaritons with tapered bulk materials, Nano Lett. 14(5), 2896 (2014)
https://doi.org/10.1021/nl500943r pmid: 24773123
68 K. Y. M. Yeung, J. Chee, H. Yoon, Y. Song, J. Kong, and D. Ham, Far-infrared graphene plasmonic crystals for plasmonic band engineering, Nano Lett. 14(5), 2479 (2014)
https://doi.org/10.1021/nl500158y pmid: 24678885
69 W. Gao, J. Shu, C. Qiu, and Q. Xu, Excitation of plasmonic waves in graphene by guided-mode resonances, ACS Nano 6(9), 7806 (2012)
https://doi.org/10.1021/nn301888e pmid: 22862147
70 W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, Excitation and active control of propagating surface plasmon polaritons in graphene, Nano Lett. 13(8), 3698 (2013)
https://doi.org/10.1021/nl401591k pmid: 23895501
71 J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea, Coupling light into graphene plasmons through surface acoustic waves, Phys. Rev. Lett. 111(23), 237405 (2013)
https://doi.org/10.1103/PhysRevLett.111.237405 pmid: 24476304
72 T. Christensen, A. P. Jauho, M. Wubs, and N. A. Mortensen, Localized plasmons in graphene-coated nanospheres, Phys. Rev. B 91(12), 125414 (2015)
https://doi.org/10.1103/PhysRevB.91.125414
73 W. Wang, B. Li, E. Stassen, N. A. Mortensen, and J. Christensen, Localized surface plasmons in vibrating grapheme nanodisks, Nanoscale, 2016, arXiv: 1502.00535
https://doi.org/10.1039/C5NR08812G
74 A. Reserbat-Plantey, K. G. Schädler, L. Gaudreau, G. Navickaite, J. Güttinger, D. Chang, C. Toninelli, A. Bachtold, and F. H. L. Koppens, Electromechanical control of nitrogen-vacancy defect emission using graphene NEMS, Nat. Commun. 7, 10218 (2016)
https://doi.org/10.1038/ncomms10218
75 D. Smirnova, S. H. Mousavi, Z. Wang, Y. S. Kivshar, and A. B. Khanikaev, Trapping and guiding surface plasmons in curved graphene landscapes, arXiv: 1508.02729
76 M. Jablan, M. Soljačić, and H. Buljan, Unconventional plasmon-phonon coupling in graphene, Phys. Rev. B 83(16), 161409 (2011)
https://doi.org/10.1103/PhysRevB.83.161409
77 Y. Liu and R. F. Willis, Plasmon-phonon strongly coupled mode in epitaxial graphene,Phys. Rev. B 81(8), 081406 (2010)
https://doi.org/10.1103/PhysRevB.81.081406
78 H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, Damping pathways of mid-infrared plasmons in graphene nanostructures, Nat. Photonics 7(5), 394 (2013)
https://doi.org/10.1038/nphoton.2013.57
79 X. Zhu, W. Wang, W. Yan, M. B. Larsen, P. Bøggild, T. G. Pedersen, S. Xiao, J. Zi, and N. A. Mortensen, Plasmon-phonon coupling in large-area graphene dot and antidot arrays fabricated by nanosphere lithography, Nano Lett. 14(5), 2907 (2014)
https://doi.org/10.1021/nl500948p pmid: 24707792
80 V. W. Brar, M. S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L. B. Kim, M. Choi, and H. Atwater, Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures, Nano Lett. 14(7), 3876 (2014)
https://doi.org/10.1021/nl501096s pmid: 24874205
81 K. Bolotin, K .Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Commun. 146(9-10), 351 (2008)
https://doi.org/10.1016/j.ssc.2008.02.024
82 S. Fratini and F. Guinea, Substrate-limited electron dynamics in graphene, Phys. Rev. B 77(19), 195415 (2008)
https://doi.org/10.1103/PhysRevB.77.195415
83 K. Hess and P. Vogl, Remote polar phonon scattering in silicon inversion layers, Solid State Commun. 30(12), 807 (1979)
https://doi.org/10.1016/0038-1098(79)90051-6
84 C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P.Kim, K. L. Shepard, and J. Hone, Boron nitride substrates for high-quality graphene electronics, Nat. Nanotechnol. 5(10), 722 (2010)
https://doi.org/10.1038/nnano.2010.172 pmid: 20729834
85 S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and F. Mauri, Breakdown of the adiabatic Born-Oppenheimer approximation in graphene, Nat. Mater. 6(3), 198 (2007)
https://doi.org/10.1038/nmat1846 pmid: 17293849
86 A. Mooradian and G. B. Wright, Observation of the interaction of plasmons with longitudinal optical phonons in GaAs, Phys. Rev. Lett. 16(22), 999 (1966)
https://doi.org/10.1103/PhysRevLett.16.999
87 E. H. Hwang, R. Sensarma, and S. Das Sarma, Plasmon-phonon coupling in graphene, Phys. Rev. B 82(19), 195406 (2010)
https://doi.org/10.1103/PhysRevB.82.195406
88 R. J. Koch, T. Seyller, and J. A. Schaefer, Strong phonon-plasmon coupled modes in the graphene/silicon carbide heterosystem, Phys. Rev. B 82(20), 201413 (2010)
https://doi.org/10.1103/PhysRevB.82.201413
89 I. Forbeaux, J. M. Themlin, and J. M. Debever, Heteroepitaxial graphite on 6H-SiC(0001): Interface formation through conduction-band electronic structure, Phys. Rev. B 58(24), 16396 (1998)
https://doi.org/10.1103/PhysRevB.58.16396
90 Y. Ou, X. Zhu, V. Jokubavicius, R.Yakimova, N. A. Mortensen, M. Syväjärvi, S. Xiao, and H. Ou, Broadband antireflection and light extraction enhancement in fluorescent SiC with nanodome structures, Sci. Rep. 4, 4662 (2014)
https://doi.org/10.1038/srep04662 pmid: 24722521
91 X. Zhu, Y. Ou, V. Jokubavicius, M. Syvajarvi, O. Hansen, H. Ou, N. A. Mortensen, and S. Xiao, Broadband light-extraction enhanced by arrays of whispering gallery resonators, Appl. Phys. Lett. 101(24), 241108 (2012)
https://doi.org/10.1063/1.4771124
92 X. Zhu, C. Zhang, X. Liu, O. Hansen, S. Xiao, N. A. Mortensen, and J. Zi, Evaporation of water droplets on “lock-and-key” structures with nanoscale features, Langmuir 28(25), 9201 (2012)
https://doi.org/10.1021/la301867q pmid: 22662879
93 X. Zhu, F. Xie, L. Shi, X. Liu, N. A. Mortensen, S. Xiao, J. Zi, and W. Choy, Broadband enhancement of spontaneous emission in a photonic-plasmonic structure , Opt. Lett. 37(11), 2037 (2012)
https://doi.org/10.1364/OL.37.002037 pmid: 22660113
94 X. Zhu, S. Xiao, L. Shi, X. Liu, J. Zi, O. Hansen, and N. A. Mortensen, A stretch-tunable plasmonic structure with a polarization-dependent response, Opt. Express 20(5), 5237 (2012)
https://doi.org/10.1364/OE.20.005237 pmid: 22418330
95 Y. Li, H. Yan, D. B. Farmer, X. Meng, W. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers, Nano Lett. 14(3), 1573 (2014)
https://doi.org/10.1021/nl404824w pmid: 24528250
96 I. D. Barcelos, A. R. Cadore, L. C. Campos, A. Malachias, K. Watanabe, T. Taniguchi, F. C. Maia, R. Freitas, and C. Deneke, Graphene/h-BN plasmon-phonon coupling and plasmon delocalization observed by infrared nano-spectroscopy, Nanoscale 7(27), 11620 (2015)
https://doi.org/10.1039/C5NR01056J pmid: 26091534
97 V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, Highly confined tunable mid-infrared plasmonics in graphene nanoresonators, Nano Lett. 13(6), 2541 (2013)
https://doi.org/10.1021/nl400601c pmid: 23621616
98 M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, Tunable terahertz hybrid metal-graphene plasmons, Nano Lett . 15(10), 7099 (2015)
https://doi.org/10.1021/acs.nanolett.5b03191 pmid: 26397718
99 M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, Plasmonic tunable metamaterial absorber as ultraviolet protection film, Appl. Phys. Lett. 104(4), 041103 (2014)
https://doi.org/10.1063/1.4863202
100 D. Franklin, Y. Chen, A.Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S. T. Wu, and D. Chanda, Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces, Nat. Commun. 6, 7337 (2015
https://doi.org/10.1038/ncomms8337 pmid: 26066375
101 A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, Real-time tunable lasing from plasmonic nanocavity arrays, Nat. Commun. 6, 6939 (2015)
https://doi.org/10.1038/ncomms7939
102 G. C.Dyer, G. R.Aizin, S. J.Allen, A. D.Grine, D.Bethke, J. L.Reno, and E. A. Shaner, Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals, Nat. Photonics 7(11), 925 (2013)
https://doi.org/10.1038/nphoton.2013.252
103 B. Fluegel, A. Mascarenhas, D. W. Snoke, L. N. Pfeiffer, and K. West, Plasmonic all-optical tunable wavelength shifter, Nat. Photonics 1(12), 701 (2007)
https://doi.org/10.1038/nphoton.2007.229
104 Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J.García de Abajo, Gated tunability and hybridization of localized plasmons in nanostructured graphene, ACS Nano 7(3), 2388 (2013)
https://doi.org/10.1021/nn3055835 pmid: 23390960
105 V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, Electronic modulation of infrared radiation in graphene plasmonic resonators, Nat. Commun. 6, 7032 (2015)
https://doi.org/10.1038/ncomms8032 pmid: 25948173
106 N. A. Mortensen, S. Xiao, and J. Pedersen, Liquid-infiltrated photonic crystals: Enhanced light-matter interactions for lab-on-a-chip applications, Microfluid. Nanofluidics 4(1), 117 (2008)
https://doi.org/10.1007/s10404-007-0203-2
107 L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms, Nano Lett. 6(9), 2060 (2006)
https://doi.org/10.1021/nl061286u pmid: 16968025
108 C. Jeppesen, S. Xiao, N. A. Mortensen, and A. Kristensen, Metamaterial localized resonance sensors: Prospects and limitations, Opt. Express 18(24), 25075 (2010)
https://doi.org/10.1364/OE.18.025075 pmid: 21164853
109 M. Freitag, T. Low, W. Zhu, H. Yan, F. Xia, and P. Avouris, Photocurrent in graphene harnessed by tunable intrinsic plasmons, Nat. Commun. 4, 1951 (2013)
https://doi.org/10.1038/ncomms2951 pmid: 23727714
110 X. Zhu, L. Shi, M. S. Schmidt, A. Boisen, O. Hansen, J. Zi, S. Xiao, and N. A. Mortensen, Enhanced light-matter interactions in graphene-covered gold nanovoid arrays, Nano Lett. 13(10), 4690 (2013)
https://doi.org/10.1021/nl402120t pmid: 24010940
111 J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, Electrical control of optical plasmon resonance with graphene, Nano Lett. 12(11), 5598 (2012)
https://doi.org/10.1021/nl302656d pmid: 23025816
112 S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared, Nano Lett. 13(3), 1111 (2013)
https://doi.org/10.1021/nl304476b pmid: 23398172
113 J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, Atomically precise bottom-up fabrication of graphene nanoribbons, Nature 466(7305), 470 (2010)
https://doi.org/10.1038/nature09211 pmid: 20651687
114 X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Chemically derived, ultrasmooth graphene nanoribbon semiconductors, Science 319(5867), 1229 (2008)
https://doi.org/10.1126/science.1150878 pmid: 18218865
115 S. Rasappa, J. M. Caridad, L. Schulte, A. Cagliani, D. Borah, M. A. Morris, P. Bøggild, and S.Ndoni, High quality sub-10 nm graphene nanoribbons by on-chip PS-b-PDMS block copolymer lithography, RSC Adv. 5, 66711 (2015)  
https://doi.org/10.1039/C5RA11735F
116 W. Wang, T.Christensen, A. P.Jauho, K. S. Thygesen, M. Wubs, and N. A. Mortensen, Plasmonic eigenmodes in individual and bow-tie graphene nanotriangles, Sci. Rep. 5, 9535 (2015)
https://doi.org/10.1038/srep09535 pmid: 25856506
117 A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K.Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, Highly confined low-loss plasmons in graphene-boron nitride heterostructures, Nat. Mater. 14(4), 421 (2015)
https://doi.org/10.1038/nmat4169 pmid: 25532073
118 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306, 666 (2004)
https://doi.org/10.1126/science.1102896
119 Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)
https://doi.org/10.1038/nature04235 pmid: 16281031
120 Y. Hao, M. S.Bharathi, L. Wang, Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B. Fallahazad, H. Ramanarayan, C. W. Magnuson, E. Tutuc, B. I. Yakobson, K. F. McCarty, Y. W. Zhang, P. Kim, J. Hone, L. Colombo, and R. S. Ruoff, The role of surface oxygen in the growth of large single-crystal graphene on copper, Science 342(6159), 720 (2013)
https://doi.org/10.1126/science.1243879 pmid: 24158906
121 T. Wu, X. Zhang, Q. Yuan, J. Xue, G. Lu, Z. Liu, H. Wang, H. Wang, F. Ding, Q. Yu, X. Xie, and M. Jiang, Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu-Ni alloys, Nat. Mater. 15(1), 43 (2016) PMID:26595118
https://doi.org/10.1038/nmat4477
122 J. L.Cheng, N. Vermeulen, and J. E. Sipe, Third order optical nonlinearity of graphene, New J. Phys. 16(5), 053014 (2014)
https://doi.org/10.1088/1367-2630/16/5/053014
123 N. M. R. Peres, Y. V. Bludov, J. E. Santos, A. P. Jauho, and M. I. Vasilevskiy, Optical bistability of graphene in the terahertz range, Phys. Rev. B 90(12), 125425 (2014)
https://doi.org/10.1103/PhysRevB.90.125425
124 D. A. Smirnova, I. V. Shadrivov, A. E. Miroshnichenko, A. I. Smirnov, and Y. S. Kivshar, Second-harmonic generation by a graphene nanoparticle, Phys. Rev. B 90(3), 035412 (2014)
https://doi.org/10.1103/PhysRevB.90.035412
125 T. Christensen, W. Yan, A.-P.Jauho, M. Wubs, and N. A. Mortensen, Kerr nonlinearity and plasmonic bistability in graphene nanoribbons, Phys. Rev. B 92, 121407(R) (2015)
https://doi.org/10.1103/PhysRevB.92.121407
126 J. D. Cox and F. Javier García de Abajo, Electrically tunable nonlinear plasmonics in graphene nanoislands, Nat. Commun. 5, 5725 (2014)
https://doi.org/10.1038/ncomms6725 pmid: 25500534
127 J. D. Cox and F. J. García de Abajo, Plasmon-enhanced nonlinear wave mixing in nanostructured graphene, ACS Photonics 2(2), 306 (2015)
https://doi.org/10.1021/ph500424a
[1] Xiao-Ming Huang, Li-Zhao Liu, Si Zhou, Ji-Jun Zhao. Physical properties and device applications of graphene oxide[J]. Front. Phys. , 2020, 15(3): 33301-.
[2] Zhi-Yue Zheng, Rui Xu, Kun-Qi Xu, Shi-Li Ye, Fei Pang, Le Lei, Sabir Hussain, Xin-Meng Liu, Wei Ji, Zhi-Hai Cheng. Real-space visualization of intercalated water phases at the hydrophobic graphene interface with atomic force microscopy[J]. Front. Phys. , 2020, 15(2): 23601-.
[3] O. de los Santos-Sánchez. Probing intensity-field correlations of single-molecule surface-enhanced Raman-scattered light[J]. Front. Phys. , 2019, 14(6): 61601-.
[4] Ke Wang, Tao Hou, Yafei Ren, Zhenhua Qiao. Enhanced robustness of zero-line modes in graphene via magnetic field[J]. Front. Phys. , 2019, 14(2): 23501-.
[5] Rong Wang, Xin-Gang Ren, Ze Yan, Li-Jun Jiang, Wei E. I. Sha, Guang-Cun Shan. Graphene based functional devices: A short review[J]. Front. Phys. , 2019, 14(1): 13603-.
[6] Tataiana Latychevskaia, Seok-Kyun Son, Yaping Yang, Dale Chancellor, Michael Brown, Servet Ozdemir, Ivan Madan, Gabriele Berruto, Fabrizio Carbone, Artem Mishchenko, Kostya S. Novoselov. Stacking transition in rhombohedral graphite[J]. Front. Phys. , 2019, 14(1): 13608-.
[7] T. Latychevskaia, C. R. Woods, Yi Bo Wang, M. Holwill, E. Prestat, S. J. Haigh, K. S. Novoselov. Convergent and divergent beam electron holography and reconstruction of adsorbates on free-standing two-dimensional crystals[J]. Front. Phys. , 2019, 14(1): 13606-.
[8] Xinzhou Deng, Hualing Yang, Shifei Qi, Xiaohong Xu, Zhenhua Qiao. Quantum anomalous Hall effect and giant Rashba spin-orbit splitting in graphene system co-doped with boron and 5d transition-metal atoms[J]. Front. Phys. , 2018, 13(5): 137308-.
[9] Mingjun Hu, Naibo Zhang, Guangcun Shan, Jiefeng Gao, Jinzhang Liu, Robert K. Y. Li. Two-dimensional materials: Emerging toolkit for construction of ultrathin high-efficiency microwave shield and absorber[J]. Front. Phys. , 2018, 13(4): 138113-.
[10] Ben-Hu Zhou, Ben-Liang Zhou, Yang-Su Zeng, Man-Yi Duan, Guang-Hui Zhou. Spin-dependent transport properties and Seebeck effects for a crossed graphene superlattice p-n junction with armchair edge[J]. Front. Phys. , 2018, 13(4): 137304-.
[11] Wen-Cheng Yue, Pei-Jun Yao, Li-Xin Xu, Hai Ming. All-dielectric bowtie waveguide with deep subwavelength mode confinement[J]. Front. Phys. , 2018, 13(4): 134207-.
[12] Ze-Zhou He, Yin-Bo Zhu, Heng-An Wu. Self-folding mechanics of graphene tearing and peeling from a substrate[J]. Front. Phys. , 2018, 13(3): 138111-.
[13] Zhinan Ma (马志楠), Jibin Zhuang (庄吉彬), Xu Zhang (张旭), Zhen Zhou (周震). SiP monolayers: New 2D structures of group IV-V compounds for visible-light photohydrolytic catalysts[J]. Front. Phys. , 2018, 13(3): 138104-.
[14] Hai-Ming Dong, Yi-Feng Duan, Fei Huang, Jin-Long Liu. Electron drift velocity and mobility in graphene[J]. Front. Phys. , 2018, 13(2): 137203-.
[15] Tong Liu (刘彤), Hong Zhang (张红), Xin-Lu Cheng (程新路), Yang Xu (徐阳). Coherent resonance of quantum plasmons in Stone–Wales defected graphene–silver nanowire hybrid system[J]. Front. Phys. , 2017, 12(5): 125201-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed