Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2016, Vol. 11 Issue (4) : 110303    https://doi.org/10.1007/s11467-016-0553-x
RESEARCH ARTICLE
Multiple teleportation via partially entangled GHZ state
Pei-Ying Xiong1,Xu-Tao Yu1,Hai-Tao Zhan1,Zai-Chen Zhang2,*()
1. State Key Lab of Millimeter Waves, Southeast University, Nanjing 210096, China
2. National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China
 Download: PDF(281 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Quantum teleportation is important for quantum communication. We propose a protocol that uses a partially entangled Greenberger–Horne–Zeilinger (GHZ) state for single hop teleportation. Quantum teleportation will succeed if the sender makes a Bell state measurement, and the receiver performs the Hadamard gate operation, applies appropriate Pauli operators, introduces an auxiliary particle, and applies the corresponding unitary matrix to recover the transmitted state.We also present a protocol to realize multiple teleportation of partially entangled GHZ state without an auxiliary particle. We show that the success probability of the teleportation is always 0 when the number of teleportations is odd. In order to improve the success probability of a multihop, we introduce the method used in our single hop teleportation, thus proposing a multiple teleportation protocol using auxiliary particles and a unitary matrix. The final success probability is shown to be improved significantly for the method without auxiliary particles for both an odd or even number of teleportations.

Keywords auxiliary particle      partially entangled GHZ state      multiple teleportation protocol     
Corresponding Author(s): Zai-Chen Zhang   
Online First Date: 01 February 2016    Issue Date: 08 June 2016
 Cite this article:   
Pei-Ying Xiong,Xu-Tao Yu,Hai-Tao Zhan, et al. Multiple teleportation via partially entangled GHZ state[J]. Front. Phys. , 2016, 11(4): 110303.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-016-0553-x
https://academic.hep.com.cn/fop/EN/Y2016/V11/I4/110303
1 C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein˗Podolsky˗Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)
https://doi.org/10.1103/PhysRevLett.70.1895
2 D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, Experimental quantum teleportation, Nature 390(6660), 575 (1997)
https://doi.org/10.1038/37539
3 D. Bouwmeester, K. Mattle, J. W. Pan, H. Weinfurter, A. Zeilinger, and M. Zukowski, Experimental quantum teleportation of arbitrary quantum states, Appl. Phys. B 67(6), 749 (1998)
https://doi.org/10.1007/s003400050575
4 J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, Experimental entanglement swapping: Entangling photons that never interacted, Phys. Rev. Lett. 80(18), 3891 (1998)
https://doi.org/10.1103/PhysRevLett.80.3891
5 M. Ikram, S. Y. Zhu, and M. S. Zubairy, Quantum teleportation of an entangled state, Phys. Rev. A 62(2), 022307 (2000)
https://doi.org/10.1103/PhysRevA.62.022307
6 P. van Loock and S. L. Braunstein, Multipartite entanglement for continuous variables: A quantum teleportation network, Phys. Rev. Lett. 84(15), 3482 (2000)
https://doi.org/10.1103/PhysRevLett.84.3482
7 S. T. Cheng, C. Y. Wang, and M. H. Tao, Quantum communication for wireless wide-area networks, IEEE J. Sel. Areas Comm. 23(7), 1424 (2005)
https://doi.org/10.1109/JSAC.2005.851157
8 F. G. Deng, G. L. Long, and X. S. Liu, Two-step quantum direct communication protocol using the Einstein˗Podolsky˗ Rosen pair block, Phys. Rev. A 68(4), 042317 (2003)
https://doi.org/10.1103/PhysRevA.68.042317
9 L. Marinatto and T. Weber, Which kind of two-particle states can be teleported through a three-particle quantum channel, Found. Phys. Lett. 13(2), 119 (2000)
https://doi.org/10.1023/A:1007875331710
10 H. Lu and G. C. Guo, Teleportation of a two-particle entangled state via entanglement swapping, Phys. Rev. Lett. 276(5-6), 209 (2000)
https://doi.org/10.1016/S0375-9601(00)00666-6
11 M. Cao and S. Q. Zhu, Probabilistic teleportation of n particle state via n pairs of entangled particles, Commun. Theor. Phys. 43(1), 69 (2005)
https://doi.org/10.1088/0253-6102/43/1/014
12 F. G. Deng, C. Y. Li, Y. S. Li, H.Y. Zhou, and Y. Wang, Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement, Phys. Rev. A 72(2), 022338 (2005)
https://doi.org/10.1103/PhysRevA.72.022338
13 T. Gao, Quantum logic networks for probabilistic and controlled teleportation of unknown quantum states, Commun. Theor. Phys. 42(2), 223 (2004)
https://doi.org/10.1088/0253-6102/42/2/223
14 P. Espoukeh and P. Pedram, Quantum teleportation through noisy channels with multi-qubit GHZ states, Quantum Inform. Process. 13(8), 1789 (2014)
https://doi.org/10.1007/s11128-014-0766-2
15 Y. Chang, S. B. Zhang, L. L. Yan, and J. Li, Deterministic secure quantum communication and authentication protocol based on three-particle W state and quantum one-time pad, Chin. Sci. Bull. 59(23), 2835 (2014)
https://doi.org/10.1007/s11434-014-0333-3
16 X. F. Zou and D. W. Qiu, Three-step semiquantum secure direct communication protocol, Sci. China. Phys. Mech. 57(9), 1696 (2014)
https://doi.org/10.1007/s11433-014-5542-x
17 L. M. Liang, S. H. Sun, M. S. Jiang, and C. Y. Li, Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices, Front. Phys. 9(5), 613 (2014)
https://doi.org/10.1007/s11467-014-0420-6
18 C. Perumangatt, A. Abdul Rahim, G. R. Salla, S. Prabhakar, G. K. Samanta, G. Paul, and R. P. Singh, Three-particle hyper-entanglement: Teleportation and quantum key distribution, Quantum Inform. Process. 14(10), 3813 (2015)
https://doi.org/10.1007/s11128-015-1056-3
19 S. Sazim, S. Adhikari, S. Banerjee, and T. Pramanik, Quantification of entanglement of teleportation in arbitrary dimensions, Quantum Inform. Process. 13(4), 863 (2014)
https://doi.org/10.1007/s11128-013-0697-3
20 X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Quantum teleportation of multiple degrees of freedom of a single photon, Nature 518(7540), 516 (2015)
https://doi.org/10.1038/nature14246
21 Y. B. Sheng and L. Zhou, Two-step complete polarization logic Bell-state analysis, Sci. Rep. 5, 13453 (2015)
https://doi.org/10.1038/srep13453
22 C. Y. Lu, X. Q. Zhou, O. Guhne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, Experimental entanglement of six photons in graph states, Nat. Phys. 3(2), 91 (2007)
https://doi.org/10.1038/nphys507
23 X. C. Yao, T. X. Wang, P. Xu, H. Lu, G. S. Pan, X. H. Bao, C. Z. Peng, C. Y. Lu, Y. A. Chen, and J. W. Pan, Observation of eight-photon entanglement, Nat. Photonics 6(4), 225 (2012)
https://doi.org/10.1038/nphoton.2011.354
24 Q. Zhang, A. Goebel, C. Wagenknecht, Y. A. Chen, B. Zhao, T. Yang, A. Mair, J. Schmiedmayer, and J. W. Pan, Experimental quantum teleportation of a two-qubit composite System, Nat. Phys. 2(10), 678 (2006)
https://doi.org/10.1038/nphys417
25 X. M. Jin, J. G. Ren, B. Yang, Z. H. Yi, F. Zhou, X. F. Xu, S. K. Wang, D. Yang, Y. F. Hu, S. Jiang, T. Yang, H. Yin, K. Chen, C. Z. Peng, and J. W. Pan, Experimental free-space quantum teleportation, Nat. Photonics 4(6), 376 (2010)
https://doi.org/10.1038/nphoton.2010.87
26 J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, and J. W. Pan, Quantum teleportation and entanglement distribution over 100-kilometre free-space channels, Nature 488(7410), 185 (2012)
https://doi.org/10.1038/nature11332
27 J. W. Pan, S. Gasparoni, M. Aspelmeyer, T. Jennewein, and A. Zeilinger, Experimental realization of freely propagating teleported qubits, Nature 421(6924), 721 (2003)
https://doi.org/10.1038/nature01412
28 M. Li, M. J. Zhao, S. M. Fei, and Z. X. Wang, Experimental detection of quantum entanglement, Front. Phys. 8(4), 357 (2013)
https://doi.org/10.1007/s11467-013-0355-3
29 X. L. Su, S. H. Hao, Y. P. Zhao, X. W. Deng, X. J. Jia, C. D. Xie, and K. C. Peng, Demonstration of eight-partite two-diamond shape cluster state for continuous variables, Front. Phys. 8(1), 20 (2013)
https://doi.org/10.1007/s11467-013-0284-1
30 F. L. Yan and T. Yan, Probabilistic teleportation via a non-maximally entangled GHZ state, Chin. Sci. Bull. 55(10), 902 (2010)
https://doi.org/10.1007/s11434-009-0725-y
31 Z. X. Man, Y. J. Xia, and N. B. An, Quantum state sharing of an arbitrary multi-qubit state using non-maximally entangled GHZ states, Eur. Phys. J. D 42(2), 333 (2007)
https://doi.org/10.1140/epjd/e2007-00024-x
32 D. P. Tian, Y. J. Tao, and M. Qin, Teleportation of an arbitrary two-qudit state based on the non-maximally four-qudit cluster state, Sci. China. Ser. G 51(10), 1523 (2008)
https://doi.org/10.1007/s11433-008-0149-8
33 T. Yamamoto, M. Koashi, and N. Imoto, Concentration and purification scheme for two partially entangled photon pairs, Phys. Rev. A 64(1), 012304 (2001)
https://doi.org/10.1103/PhysRevA.64.012304
34 Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs, Phys. Rev. A 85(1), 012307 (2012)
https://doi.org/10.1103/PhysRevA.85.012307
35 B. Gu, Single-photon-assisted entanglement concentration of partially entangled multiphoton W states with linear optics, J. Opt. Soc. Amer. B 29(7), 1685 (2012)
https://doi.org/10.1364/JOSAB.29.001685
36 X. T. Yu, J. Xu, and Z. C. Zhang, Distributed wireless quantum communication networks, Chin. Phys. B 22(9), 090311 (2013)
https://doi.org/10.1088/1674-1056/22/9/090311
37 J. W. Pan, C. Simon, C. Brukner, and A. Zeilinger, Entanglement purification for quantum communication, Nature 410(6832), 1067 (2001)
https://doi.org/10.1038/35074041
38 J. W. Pan, S. Gasparoni, R. Ursin, G. Weihs, and A. Zeilinger, Experimental entanglement purification of arbitrary unknown states, Nature 423(6938), 417 (2003)
https://doi.org/10.1038/nature01623
39 S. Y. Zhao, J. Liu, L. Zhou, and Y. B. Sheng, Two-step entanglement concentration for arbitrary electronic cluster state, Quantum Inform. Process. 12(12), 3633 (2013)
https://doi.org/10.1007/s11128-013-0623-8
40 L. Zhou, Y. B. Sheng, W. W. Cheng, L. Y. Gong, and S. M. Zhao, Efficient entanglement concentration for arbitrary less-entangled NOON states, Quantum Inform. Process. 12(2), 1307 (2013)
https://doi.org/10.1007/s11128-012-0472-x
41 Y. B. Sheng, F. G. Deng, and G. L. Long, Complete hyperentangled-Bell-state analysis for quantum communication, Phys. Rev. A 82(3),032318 (2010)
https://doi.org/10.1103/PhysRevA.82.032318
42 X. Yan, Y. F. Yu, and Z. M. Zhang, Entanglement concentration for a non-maximally entangled four-photon cluster state, Front. Phys. 9(5), 640 (2014)
https://doi.org/10.1007/s11467-014-0435-z
43 K. Wang, X. T. Yu, S. L. Lu, and Y. X. Gong, Quantum wireless multi-hop communication based on arbitrary Bell pairs and teleportation, Phys. Rev. A 89(2), 022329 (2014)
https://doi.org/10.1103/PhysRevA.89.022329
44 X. F. Cai, X. T. Yu, L. H. Shi, and Z. C. Zhang, Partially entangled states bridge in quantum teleportation, Front. Phys. 9(5), 646 (2014)
https://doi.org/10.1007/s11467-014-0432-2
45 L. H. Shi, X. T. Yu, X. F. Cai, Y. X. Gong, and Z. C. Zhang, Quantum information transmission in the quantum wireless multihop network based on Werner state, Chin. Phys. B 24(5), 050308 (2015)
https://doi.org/10.1088/1674-1056/24/5/050308
46 R. Fortes and G. Rigolin, Improving the efficiency of single and multiple teleportation protocols based on the direct use of partially entangled states, Ann. Phys. 336(9), 517 (2012)
https://doi.org/10.1016/j.aop.2013.06.009
[1] Pei-Ying Xiong,Xu-Tao Yu,Zai-Chen Zhang,Hai-Tao Zhan,Jing-Yu Hua. Routing protocol for wireless quantum multi-hop mesh backbone network based on partially entangled GHZ state[J]. Front. Phys. , 2017, 12(4): 120302-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed