Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2016, Vol. 11 Issue (4) : 117403    https://doi.org/10.1007/s11467-016-0554-9
RESEARCH ARTICLE
Impurity scattering effect in Pd-doped superconductor SrPt3P
Kang-Kang Hu1,2,Bo Gao2,Qiu-Cheng Ji2,Yong-Hui Ma2,3,Hui Zhang4,Gang Mu2,*(),Fu-Qiang Huang4,Chuan-Bing Cai1,Xiao-Ming Xie2
1. Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai 200444, China
2. State Key Laboratory of Functional Materials for Informatics and Shanghai Center for Superconductivity, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
3. School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
4. CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
 Download: PDF(233 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We present a systematic study of the impurity scattering effect induced by Pd dopants in the superconductor SrPt3P. Using a solid-state reaction method, we fabricated the Pd-doped superconductor Sr(Pt1−xPdx)3P.We found that the residual resistivity ρ0 increases quickly with Pd doping, whereas the residual resistance ratio (RRR) displays a dramatic reduction. In addition, both the nonlinear field-dependent behavior of the Hall resistivity ρxy and the strong temperature dependence of the Hall coefficient RH at low temperature are suppressed by Pd doping. All the experimental results can be explained by an increase in scattering by impurities induced by doping. Our results suggest that the Pt position is very crucial to the carrier conduction in the present system.

Keywords impurity scattering effect      SrPt3P      superconductors     
Corresponding Author(s): Gang Mu   
Online First Date: 01 February 2016    Issue Date: 08 June 2016
 Cite this article:   
Kang-Kang Hu,Bo Gao,Qiu-Cheng Ji, et al. Impurity scattering effect in Pd-doped superconductor SrPt3P[J]. Front. Phys. , 2016, 11(4): 117403.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-016-0554-9
https://academic.hep.com.cn/fop/EN/Y2016/V11/I4/117403
1 J. G. Bednorz and K. A. Müller, Possible high Tc superconductivity in the Ba-La-Cu-O system, Z. Phys. B: Condens. Matter 64(2), 189 (1986)
https://doi.org/10.1007/BF01303701
2 Y. Kamihara, T. Watanabe, M. <?Pub Caret1?>Hirano, and H. Hosono, Iron-based layered superconductor La[O1- xFx]FeAs (x= 0.05-0.12) with Tc= 26 K, J. Am. Chem. Soc. 130(11), 3296 (2008)
https://doi.org/10.1021/ja800073m
3 W. Li, C. Setty, X. H. Chen, and J. P. Hu, Electronic and magnetic structures of chain structured iron selenide compounds, Front. Phys. 9(4), 465 (2014)
https://doi.org/10.1007/s11467-014-0428-y
4 G. Mu, V. Sandu, W. Li, and B. Shen, Exotic superconductivity in correlated electron systems, Adv. Condens. Matter Phys. 2015, 180195 (2015)
https://doi.org/10.1155/2015/180195
5 T. Takayama, K. Kuwano, D. Hirai, Y. Katsura, A. Yamamoto, and H. Takagi, Strong coupling superconductivity at 8.4 K in an antiperovskite phosphide SrPt3P, Phys. Rev. Lett. 108(23), 237001 (2012)
https://doi.org/10.1103/PhysRevLett.108.237001
6 E. Bauer, G. Hilscher, H. Michor, Ch. Paul, E. W. Scheidt, A. Gribanov, Yu. Seropegin, H. Noel, M. Sigrist, and P. Rogl, Heavy fermion superconductivity and magnetic order in noncentrosymmetric CePt3Si, Phys. Rev. Lett. 92(2), 027003 (2004)
https://doi.org/10.1103/PhysRevLett.92.027003
7 C. J. Kang, K. H. Ahn, K. W. Lee, and B. I. Min, Electron and phonon band-structure calculations for the antipolar SrPt3P antiperovskite superconductor: Evidence of low-energy two-dimensional phonons, J. Phys. Soc. Jpn. 82(5), 053703 (2013)
https://doi.org/10.7566/JPSJ.82.053703
8 H. Chen, X. F. Xu, C. Cao, and J. H. Dai, First-principles calculations of the electronic and phonon properties of APt3P (A= Ca, Sr, and La): Evidence for a charge-density-wave instability and a soft phonon, Phys. Rev. B 86(12), 125116 (2012)
https://doi.org/10.1103/PhysRevB.86.125116
9 R. Szczȩśniak, A. P. Durajski, and L. Herok, Theoretical description of the SrPt3P superconductor in the strong-coupling limit, Phys. Scr. 89(12), 125701 (2014)
https://doi.org/10.1088/0031-8949/89/12/125701
10 I. A. Nekrasov and M. V. Sadovskii, Electronic structure of new multiple band Pt-pnictide superconductors APt3P, JETP Lett. 96(4), 227 (2012)
https://doi.org/10.1134/S0021364012160060
11 B. I. Jawdat, B. Lv, X. Zhu, Y. Xue, and C. Chu, High-pressure and doping studies of the superconducting antiperovskite SrPt3P, Phys. Rev. B 91(9), 094514 (2015)
https://doi.org/10.1103/PhysRevB.91.094514
12 D. A. Zocco, S. Krannich, R. Heid, K. P. Bohnen, T. Wolf, T. Forrest, A. Bossak, and F. Weber, Lattice dynamical properties of superconducting SrPt3P studied via inelastic X-ray scattering and density functional perturbation theory, arXiv: 1510.02012 (2015)
13 T. Shiroka, M. Pikulski, N. D. Zhigadlo, B. Batlogg, J. Mesot, and H. R. Ott, Pairing of weakly correlated electrons in the platinum-based centrosymmetric superconductor SrPt3P, Phys. Rev. B 91(24), 245143 (2015)
https://doi.org/10.1103/PhysRevB.91.245143
14 K. K. Hu, B. Gao, Q. C. Ji, Y. H. Ma, W. Li, X. G. Xu, H. Zhang, G. Mu, F. Q. Huang, C. B. Cai, X. M. Xie, and M. H. Jiang, The effects of electron correlation and spin-orbit coupling in the isovalent Pd-doped superconductor SrPt3P, arXiv: 1601.02782 (2015)
15 C. Dong, PowderX: Windows-95-based program for powder X-ray diffraction data processing, J. Appl. Cryst. 32(4), 838 (1999)
https://doi.org/10.1107/S0021889899003039
16 J. Singleton, Band Theory and Electronic Properties of Solids, Oxford: Oxford University Press (2001)
17 G. Mu, B. Zeng, X. Zhu, F. Han, P. Cheng, B. Shen, and H. H. Wen, Synthesis, structural, and transport properties of the hole-doped superconductor Pr1-xSrxFeAsO, Phys. Rev. B 79(10), 104501 (2009)
https://doi.org/10.1103/PhysRevB.79.104501
18 G. Mu, B. Zeng, P. Cheng, X. Zhu, F. Han, B. Shen, and H. H. Wen, Superconductivity at 15.6 K in calcium-doped Tb1-xCaxFeAsO: The structure requirement for achieving superconductivity in the hole-doped 1111 phase, Europhys. Lett. 89(2), 27002 (2010)
https://doi.org/10.1209/0295-5075/89/27002
19 H. Yang, Y. Liu, C. Zhuang, J. Shi, Y. Yao, S. Massidda, M. Monni, Y. Jia, X. Xi, Q. Li, Z. K. Liu, Q. Feng, and H. H. Wen, Fully band-resolved scattering rate in MgB2 revealed by the nonlinear hall effect and magnetoresistance measurements, Phys. Rev. Lett. 101(6), 067001 (2008)
https://doi.org/10.1103/PhysRevLett.101.067001
20 G. Mu, H. Yang, and H. H. Wen, Multiband effect in the noncentrosymmetric superconductors Mg12−δIr19B16 revealed by Hall effect and magnetoresistance measurements, Phys. Rev. B 82(5), 052501 (2010)
https://doi.org/10.1103/PhysRevB.82.052501
21 L. Fang, H. Luo, P. Cheng, Z. Wang, Y. Jia, G. Mu, B. Shen, I. I. Mazin, L. Shan, C. Ren, and H. H. Wen, Roles of multiband effects and electron-hole asymmetry in the superconductivity and normal-state properties of Ba(Fe1−xCox)2As2,Phys. Rev. B 80, 140508(R) (2009)
[1] Xiang-Zhuo Xing,Wei Zhou,Chun-Qiang Xu,Nan Zhou,Fei-Fei Yuan,Yu-Feng Zhang,Xiao-Feng Xu,Zhi-Xiang Shi. Phase diagram and transport properties of Sb-doped Ca0.88La0.12Fe2As2 single crystals[J]. Front. Phys. , 2017, 12(4): 127401-.
[2] R. Szcz¸eśniak, A. P. Durajski. Superconductivity well above room temperature in compressed MgH6[J]. Front. Phys. , 2016, 11(6): 117406-.
[3] Jiangping Hu,Jing Yuan. Robustness of s-wave pairing symmetry in iron-based superconductors and its implications for fundamentals of magnetically driven high-temperature superconductivity[J]. Front. Phys. , 2016, 11(5): 117404-.
[4] A. P. Durajski. Anisotropic evolution of energy gap in Bi2212 superconductor[J]. Front. Phys. , 2016, 11(5): 117408-.
[5] Shu-Hua Wang,Shuang-Sheng Yang,Huai-Song Zhao,Feng Yuan. Quasiparticle scattering interference in electron-doped cuprate superconductors[J]. Front. Phys. , 2015, 10(6): 107405-.
[6] Shiliang Li, Pengcheng Dai. Superconductivity and spin fluctuations[J]. Front. Phys. , 2011, 6(4): 429-439.
[7] Fa Wang, Dung-Hai Lee. A reflection on the contrast between the Cooper pairing in iron-based and conventional superconductors[J]. Front. Phys. , 2011, 6(4): 350-356.
[8] Jing-lei Zhang, Lin Jiao, Ye Chen, Hui-qiu Yuan. Universal behavior of the upper critical field in iron-based superconductors[J]. Front. Phys. , 2011, 6(4): 463-473.
[9] XU Zhu-an, SHEN Jing-qin, ZHU Zeng-wei. The vortex-like excitations detected by Nernst signals in high-Tc superconductors[J]. Front. Phys. , 2006, 1(3): 344-350.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed