|
|
Cyclokinetic models and simulations for high-frequency turbulence in fusion plasmas |
Zhao Deng (赵登)1,2,*( ),R. E. Waltz3,Xiaogang Wang (王晓钢)2,4 |
1. Institute of Fluid Physics, China Academy of Engineering Physics, P.O. Box 919-108, Mianyang 621900, China 2. State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China 3. General Atomics, P.O. Box 85608, San Diego, CA 92186-5608, USA 4. Department of Physics, Harbin Institute of Technology, Harbin 150001, China |
|
|
Abstract Gyrokinetics is widely applied in plasma physics. However, this framework is limited to weak turbulence levels and low drift-wave frequencies because high-frequency gyro-motion is reduced by the gyro-phase averaging. In order to test where gyrokinetics breaks down, Waltz and Zhao developed a new theory, called cyclokinetics [R. E. Waltz and Zhao Deng, Phys. Plasmas 20, 012507 (2013)]. Cyclokinetics dynamically follows the high-frequency ion gyro-motion which is nonlinearly coupled to the low-frequency drift-waves interrupting and suppressing gyro-averaging. Cyclokinetics is valid in the high-frequency (ion cyclotron frequency) regime or for high turbulence levels. The ratio of the cyclokinetic perturbed distribution function over equilibrium distribution function δf/F can approach 1. This work presents, for the first time, a numerical simulation of nonlinear cyclokinetic theory for ions, and describes the first attempt to completely solve the ion gyro-phase motion in a nonlinear turbulence system. Simulations are performed [Zhao Deng and R. E. Waltz, Phys. Plasmas 22(5), 056101 (2015)] in a local flux-tube geometry with the parallel motion and variation suppressed by using a newly developed code named rCYCLO, which is executed in parallel by using an implicit time-advanced Eulerian (or continuum) scheme [Zhao Deng and R. E. Waltz, Comp. Phys. Comm. 195, 23 (2015)]. A novel numerical treatment of the magnetic moment velocity space derivative operator guarantee saccurate conservation of incremental entropy. By comparing the more fundamental cyclokinetic simulations with the corresponding gyrokinetic simulations, the gyrokinetics breakdown condition is quantitatively tested. Gyrokinetic transport and turbulence level recover those of cyclokinetics at high relative ion cyclotron frequencies and low turbulence levels, as required. Cyclokinetic transport and turbulence level are found to be lower than those of gyrokinetics at high turbulence levels and low-Ω∗ values with stable ion cyclotron modes. The gyrokinetic approximation is found to break down when the density perturbation exceeds 20%, or when the ratio of nonlinear E×B frequency over ion cyclotron frequency exceeds 20%. This result indicates that the density perturbation of the Tokamak L-mode near-edge is not sufficiently large for breaking the gyro-phase averaging. For cyclokinetic simulations with sufficiently unstable ion cyclotron (IC) modes and sufficiently low Ω∗ ∼10, the high-frequency component of the cyclokinetic transport can exceed that of the gyrokinetic transport. However, the low-frequency component of the cyclokinetic transport does not exceed that of the gyrokinetic transport. For higher and more physically relevant Ω∗≥50 values and physically realistic IC driving rates, the low-frequency component of the cyclokinetic transport remains smaller than that of the gyrokinetic transport. In conclusion, the “L-mode near-edge short-fall” phenomenon, observed in some low-frequency gyrokinetic turbulence transport simulations, does not arise owing to the nonlinear coupling of high-frequency ion cyclotron motion to low-frequency drift motion.
|
Keywords
turbulence
cyclokinetics
gyrokinetics
drift waves
ion cyclotron modes
|
Corresponding Author(s):
Zhao Deng (赵登)
|
Online First Date: 19 April 2016
Issue Date: 08 June 2016
|
|
1 |
M. N. Rosenbluth and A. N. Kaufman, Plasma diffusion in a magnetic field, Phys. Rev. 109(1), 1 (1958)
https://doi.org/10.1103/PhysRev.109.1
|
2 |
D. Pfirsch and A. Schluter, Max Planck Institute Report MPI/PA/7/62 (unpublished), 1962
|
3 |
H. W. Hendel, T. K. Chu, and P. A. Politzer, Collisional drift waves — Identification, stabilization, and enhanced plasma transport, Phys. Fluids 11(11), 2426 (1968)
https://doi.org/10.1063/1.1691833
|
4 |
S. C. Prager, A. K. Sen, and T. C. Marshall, Dissipative trapped-electron instability in cylindrical geometry, Phys. Rev. Lett. 33(12), 692 (1974)
https://doi.org/10.1103/PhysRevLett.33.692
|
5 |
J. Slough, G. A. Navratil, and A. K. Sen, Production and observation of the dissipative trapped-ion instability, Phys. Rev. Lett. 47(15), 1057 (1981)
https://doi.org/10.1103/PhysRevLett.47.1057
|
6 |
R. Scarmozzino, A. K. Sen, and G. A. Navratil, Production and identification of a collisionless, curvature-driven, trapped-particle instability, Phys. Rev. Lett. 57(14), 1729 (1986)
https://doi.org/10.1103/PhysRevLett.57.1729
|
7 |
A. K. Sen, J. Chen, and M. Mauel, Production and identification of the ion-temperature-gradient instability, Phys. Rev. Lett. 66(4), 429 (1991)
https://doi.org/10.1103/PhysRevLett.66.429
|
8 |
E. Mazzucato, Small-scale density fluctuations in the adiabatic toroidal compressor, Phys. Rev. Lett. 36(14), 792 (1976)
https://doi.org/10.1103/PhysRevLett.36.792
|
9 |
C. M. Surko and R. E. Slusher, Study of the density fluctuations in the adiabatic toroidal compressor scattering tokamak using CO2 laser, Phys. Rev. Lett. 37(26), 1747 (1976)
https://doi.org/10.1103/PhysRevLett.37.1747
|
10 |
R. E. Slusher and C. M. Surko, Study of density fluctuations in the absorption of oxygen on silicon, Phys. Rev. Lett. 40(6), 400 (1978)
https://doi.org/10.1103/PhysRevLett.40.400
|
11 |
W. Horton, Spectral distribution of drift-wave fluctuations in Tokamaks, Phys. Rev. Lett. 37(19), 1269 (1976)
https://doi.org/10.1103/PhysRevLett.37.1269
|
12 |
R. V. Bravenec, K. W. Gentle, B. Richards, D. W. Ross, D. C. Sing, A. J. Wootton, D. L. Brower, N. C. Luhmann, W. A. Peebles, C. X. Yu, T. P. Crowley, J. W. Heard, R. L. Hickok, P. M. Schoch, and X. Z. Yang, Core turbulence and transport studies on the Texas Experimental Tokamak, Phys. Fluids B Plasma Phys. 4(7), 2127 (1992)
https://doi.org/10.1063/1.860019
|
13 |
K. W. Gentle, R. V. Bravenec, G.Cima, H. Gasquet, G. A. Hallock, P. E. Phillips, D. W. Ross, W. L. Rowan, A. J. Wootton, T. P. Crowley, J. Heard, A. Ouroua, P. M. Schoch, and C. Watts, An experimental counter-example to the local transport paradigm, Plasma Phys. Contr. Fusion 2(6), 2292 (1995)
https://doi.org/10.1063/1.871252
|
14 |
G. Cima, R. V. Bravenec, A. J. Wootton, T. D. Rempel, R. F. Gandy, C. Watts, and M.Kwon, Core temperature fluctuations and related heat transport in the Texas Experimental Tokamak-Upgrade, Phys. Plasmas 2(3), 720 (1995)
https://doi.org/10.1063/1.871423
|
15 |
C. Watts, R. F. Gandy, G. Cima, R. V. Bravenec, D. W. Ross, A. J. Wootton, A. Ouroua, J. W. Heard, T. P. Crowley, P. M. Schoch, D. L. Brower, Y. Jiang, B. Deng, C. W. Domier, and N. C. Luhmann, Poloidal asymmetry and gradient drive in core electron density and temperature fluctuations on the Texas Experimental Tokamak-Upgrade, Phys. Plasmas 3(5), 2013 (1996)
https://doi.org/10.1063/1.871998
|
16 |
B. H. Deng, D. L. Brower, G. Cima, C. W. Domier, N. C. Luhmann, and C. Watts, Mode structure of turbulent electron temperature fluctuations in the Texas Experimental Tokamak Upgrade, Phys. Plasmas 5(12), 4117 (1998)
https://doi.org/10.1063/1.873144
|
17 |
A. Hasegawa and K. Mima, Stationary spectrum of strong turbulence in magnetized nonuniform plasma, Phys. Rev. Lett. 39(4), 205 (1977)
https://doi.org/10.1103/PhysRevLett.39.205
|
18 |
A. Hasegawa and K. Mima, Pseudo-three-dimensional turbulence in magnetized nonuniform plasma, Phys. Fluids 21(1), 87 (1978)
https://doi.org/10.1063/1.862083
|
19 |
A. Hasegawa and M. Wakatani, Plasma edge turbulence, Phys. Rev. Lett. 50(9), 682 (1983)
https://doi.org/10.1103/PhysRevLett.50.682
|
20 |
R. E. Waltz, R. R. Dominguez, and G. W. Hammett, Gyro-Landau fluid models for toroidal geometry, Phys. Fluids B Plasma Phys. 4(10), 3138 (1992)
https://doi.org/10.1063/1.860422
|
21 |
P. H. Rutherford and E. A. Frieman, Drift instabilities in general magnetic field configurations, Phys. Fluids 11(3), 569 (1968)
https://doi.org/10.1063/1.1691954
|
22 |
J. B. Taylor and R. J. Hastie, Stability of general plasma equilibria- I formal theory, Plasma Phys. 10(5), 479 (1968)
https://doi.org/10.1088/0032-1028/10/5/301
|
23 |
T. M. Antonsen and B. Lane, Kinetic equations for low frequency instabilities in inhomogeneous plasmas, Phys. Fluids 23(6), 1205 (1980)
https://doi.org/10.1063/1.863121
|
24 |
P. J. Catto, W. M. Tang, and D. E. Baldwin, Generalized gyrokinetics, Plasma Phys. 23(7), 639 (1981)
https://doi.org/10.1088/0032-1028/23/7/005
|
25 |
E. A. Frieman and L. Chen, Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria, Phys. Fluids 25(3), 502 (1982)
https://doi.org/10.1063/1.863762
|
26 |
C. Holland, A. E. White, G. R. McKee, M. W. Shafer, J. Candy, R. E. Waltz, L. Schmitz, and G. R. Tynan, Implementation and application of two synthetic diagnostics for validating simulations of core Tokamak turbulence, Phys. Plasmas 16(5), 052301 (2009)
https://doi.org/10.1063/1.3085792
|
27 |
J. Candy and R. E. Waltz, Anomalous transport scaling in the DIII-D Tokamak matched by supercomputer simulation, Phys. Rev. Lett. 91(4), 045001 (2003)
https://doi.org/10.1103/PhysRevLett.91.045001
|
28 |
R. E. Waltz, Search for the missing L-mode edge transport and possible breakdown of gyro kinetics, BAPS Series II, 57(12), 105, DI3-2 (2012)
|
29 |
A. E. White, L. Schmitz, G. R. McKee, C. Holland, W. A. Peebles, T. A. Carter, M. W. Shafer, M. E. Austin, K. H. Burrell, J.Candy, J. C. DeBoo, E. J. Doyle, M. A. Makowski, R. Prater, T. L. Rhodes, G. M. Staebler, G. R. Tynan, R. E. Waltz, and G. Wang, Measurements of core electron temperature and density fluctuations in DIII-D and comparison to nonlinear gyrokinetic simulations, Phys. Plasmas 15(5), 056116 (2008)
https://doi.org/10.1063/1.2895408
|
30 |
T. Rhodes, C. Holland, S. Smith, A. White, K. Burrell, J. Candy, J. DeBoo, E. Doyle, J. Hillesheim, J. Kinsey, G. McKee, D. Mikkelsen, W. Peebles, C. Petty, R. Prater, S. Parker, Y. Chen, L. Schmitz, G. Staebler, R. E. Waltz, G. Wang, Z. Yan, and L. Zeng, L-mode validation studies of gyrokinetic turbulence simulations via multiscale and multifield turbulence measurements on the DIII-D Tokamak, Nucl. Fusion 51(6), 063022 (2011)
https://doi.org/10.1088/0029-5515/51/6/063022
|
31 |
R. E. Waltz and D.Zhao, Nonlinear theory of drift-cyclotron kinetics and the possible breakdown of gyro-kinetics, Phys. Plasmas 20(1), 012507 (2013)
https://doi.org/10.1063/1.4773039
|
32 |
D. Zhao and R. E. Waltz, Numerical methods for nonlinear simulations of cyclokinetics illustrating the breakdown of gyrokinetics at high turbulence levels, Comput. Phys. Commun. 195, 23 (2015)
https://doi.org/10.1016/j.cpc.2015.04.012
|
33 |
R. D. Hazeltine and J. D. Meiss, Plasma Confinement, Addison-Wesley, 1992
|
34 |
W. E. Drummond and M. N. Rosenbluth, Anomalous diffusion arising from microinstabilities in a plasma, Phys. Fluids 5(12), 1507 (1962)
https://doi.org/10.1063/1.1706559
|
35 |
N. A. Krall and M. N. Rosenbluth, Trapping instabilities in a slightly inhomogeneous plasma, Phys. Fluids 5(11), 1435 (1962)
https://doi.org/10.1063/1.1706542
|
36 |
N. A. Krall and M. N. Rosenbluth, Universal instability in complex field geometries, Phys. Fluids 8(8), 1488 (1965)
https://doi.org/10.1063/1.1761444
|
37 |
T. F. R. Group, J.Adam, J. F. Bonnal, A. Breson, , Ion-cyclotron instability in the TFR Tokamak, Phys. Rev. Lett. 41(2), 113 (1978)
https://doi.org/10.1103/PhysRevLett.41.113
|
38 |
R. E. Waltz and R. R. Dominguez, Ion cyclotron modes in Tokamaks, Phys. Fluids 24(8), 1575 (1981)
https://doi.org/10.1063/1.863573
|
39 |
D. Zhao and R. E. Waltz, Testing the high turbulence level breakdown of low-frequency gyrokinetics against high-frequency cyclokinetic simulationsa), Phys. Plasmas 22(5), 056101 (2015)
https://doi.org/10.1063/1.4917176
|
40 |
S. I. Braginskii, Reviews of Plasma Physics, edited by M. A. Leontovich, Consultants Bureau, New York, 1965, Vol. I, 205
|
41 |
S. Chapman and T. G. Cowling, Mathematical Theory of Nonuniform Cases, Cambridge University Press, 1953
|
42 |
A. Sommerfeld, Thermodynamics and Statistical Mechanics, Academic Press, New York, 1949
|
43 |
L. D. Landau and E. M. Lifshits, Fluid Mechanics, Addison-Wesley, Reading, Mass, 1959
|
44 |
B. A. Trubnikov, Reviews of Plasma Physics, edited by M. A. Leontovich, Consultans Bureau, New York, 1965, Vol. I, 105
|
45 |
F. L. Hinton and R. E. Waltz, Gyrokinetic turbulent heating, Phys. Plasmas 13(10), 102301 (2006)
https://doi.org/10.1063/1.2345179
|
46 |
I. S. Gradshteyn and I. M. Ryzhk, Tables of Integrals, Series, and Products, Academic, 1965
|
47 |
J. Candy and R. E. Waltz, Velocity-space resolution, entropy production, and upwind dissipation in Eulerian gyrokinetic simulations, Phys. Plasmas 13(3), 032310 (2006)
https://doi.org/10.1063/1.2184069
|
48 |
J. Candy and R. E. Waltz, An Eulerian gyrokinetic-Maxwell solver, J. Comput. Phys. 186(2), 545 (2003)
https://doi.org/10.1016/S0021-9991(03)00079-2
|
49 |
W. Dorland, F. Jenko, M. Kotschenreuther, and B. N. Rogers, Electron temperature gradient turbulence, Phys. Rev. Lett. 85(26), 5579 (2000)
https://doi.org/10.1103/PhysRevLett.85.5579
|
50 |
M. Kotschenreuther, G. Rewoldt, and W. M. Tang, Comparison of initial value and eigenvalue codes for kinetic toroidal plasma instabilities, Comput. Phys. Commun. 88(2-3), 128 (1995)
https://doi.org/10.1016/0010-4655(95)00035-E
|
51 |
Z. Lin, S. Ethier, T. S. Hahm, and W. M. Tang, Size scaling of turbulent transport in magnetically confined plasmas, Phys. Rev. Lett. 88(19), 195004 (2002)
https://doi.org/10.1103/PhysRevLett.88.195004
|
52 |
R. E. Waltz, J. Candy, and C. C. Petty, Projected profile similarity in gyrokinetic simulations of Bohm and gyro-Bohm scaled DIII-D L and H modes, Phys. Plasmas 13(7), 072304 (2006)
https://doi.org/10.1063/1.2218811
|
53 |
E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20(2), 130 (1963)
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
|
54 |
A. E. White, N. T. Howard, M. Greenwald, M. L. Reinke, C. Sung, S. Baek, M. Barnes, J. Candy, A. Dominguez, D. Ernst, C. Gao, A. E. Hubbard, J. W. Hughes, Y. Lin, D. Mikkelsen, F. Parra, M. Porkolab, J. E. Rice, J. Walk, S. J. Wukitch, and A. C.M. Team, Multi-channel transport experiments at Alcator C-Mod and comparison with gyrokinetic simulations, Phys. Plasmas 20(5), 056106 (2013)
https://doi.org/10.1063/1.4803089
|
55 |
N. T. Howard, A. E. White, M. Reinke, M. Greenwald, C. Holland, J. Candy, and J. Walk, Validation of the gyrokinetic model in ITG and TEM dominated L-mode plasmas, Nucl. Fusion 53(12), 123011 (2013)
https://doi.org/10.1088/0029-5515/53/12/123011
|
56 |
N. T. Howard, A. E. White, M. Greenwald, M. L. Reinke, J. Walk, C. Holland, J. Candy, and T. Gorler, Investigation of the transport shortfall in Alcator C-Mod L-mode plasmas, Phys. Plasmas 20(3), 032510 (2013)
https://doi.org/10.1063/1.4795301
|
57 |
N. T. Howard, C. Holland, A. E. White, M. Greenwald, and J.Candy, Synergistic cross-scale coupling of turbulence in a Tokamak plasma, Phys. Plasmas 21(11), 112510 (2014)
https://doi.org/10.1063/1.4902366
|
58 |
D. Told, F. Jenko, T. Gorler, F. J. Casson, and E. Fable, Characterizing turbulent transport in ASDEX Upgrade L-mode plasmas via nonlinear gyrokinetic simulations, Phys. Plasmas 20(12), 122312 (2013)
https://doi.org/10.1063/1.4858899
|
59 |
J. Chowdhury, W. Wan, Y. Chen, S. E. Parker, R. J. Groebner, C. Holland, and N. T. Howard, Study of the L-mode tokamak plasma “shortfall” with local and global nonlinear gyrokinetic df particle-in-cell simulation, Phys. Plasmas 21(11), 112503 (2014)
https://doi.org/10.1063/1.4901031
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|