Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2016, Vol. 11 Issue (4) : 119801    https://doi.org/10.1007/s11467-016-0557-6
RESEARCH ARTICLE
Physical basis for the symmetries in the Friedmann–Robertson–Walker metric
Fulvio Melia()
Department of Physics, The Applied Math Program, and Department of Astronomy, The University of Arizona, Tucson, AZ 85721, USA
 Download: PDF(194 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Modern cosmological theory is based on the Friedmann–Robertson–Walker (FRW) metric. Often written in terms of co-moving coordinates, this well-known solution to Einstein’s equations owes its elegant and highly practical formulation to the cosmological principle and Weyl’s postulate, upon which it is founded. However, there is physics behind such symmetries, and not all of it has yet been recognized. In this paper, we derive the FRW metric coefficients from the general form of the spherically symmetric line element and demonstrate that, because the co-moving frame also happens to be in free fall, the symmetries in FRW are valid only for a medium with zero active mass. In other words, the spacetime of a perfect fluid in cosmology may be correctly written as FRW only when its equation of state is ρ+3p = 0, in terms of the total pressure p and total energy density ρ. There is now compelling observational support for this conclusion, including the Alcock–Paczyński test, which shows that only an FRW cosmology with zero active mass is consistent with the latest model-independent baryon acoustic oscillation data.

Keywords cosmological parameters      cosmological observations      cosmological theory      gravitation     
Corresponding Author(s): Fulvio Melia   
Online First Date: 17 March 2016    Issue Date: 08 June 2016
 Cite this article:   
Fulvio Melia. Physical basis for the symmetries in the Friedmann–Robertson–Walker metric[J]. Front. Phys. , 2016, 11(4): 119801.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-016-0557-6
https://academic.hep.com.cn/fop/EN/Y2016/V11/I4/119801
1 J. R. Oppenheimer and H. Snyder, On continued gravitational contraction, Phys. Rev. 56(5), 455 (1939)
https://doi.org/10.1103/PhysRev.56.455
2 G. C. McVittie, Gravitational collapse to a small volume, Astrophys. J. 140, 401 (1964)
https://doi.org/10.1086/147937
3 C. W. Misner and D. H. Sharp, Relativistic equations for adiabatic, spherically symmetric gravitational collapse, Phys. Rev. 136(2B), B571 (1964)
https://doi.org/10.1103/PhysRev.136.B571
4 I. H. Thompson and G. F. Whitrow, Time-dependent internal solutions for spherically symmetrical bodies in general relativity (I): Adiabatic collapse, Mon. Not. R. Astron. Soc. 136(2), 207 (1967)
https://doi.org/10.1093/mnras/136.2.207
5 G. Birkhoff, Relativity and Modern Physics, Harvard University Press, 1923
6 H. P. Robertson, On the foundations of relativistic cosmology, Proc. Natl. Acad. Sci. USA 15(11), 822 (1929)
https://doi.org/10.1073/pnas.15.11.822
7 S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, Wiley, 1972
8 F. Melia, The cosmic horizon, Mon. Not. R. Astron. Soc. 382(4), 1917 (2007)
https://doi.org/10.1111/j.1365-2966.2007.12499.x
9 D. H. Weinberg, M. J. Mortonson, D. J. Eisenstein, C. Hirata, A. G. Riess, and E. Rozo, Observational probes of cosmic acceleration, Phys. Rep. 530(2), 87 (2013)
https://doi.org/10.1016/j.physrep.2013.05.001
10 S. Perlmutter, G.Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, W. J. Couch, and T. S. C. Project, Measurements of W and L from 42 high-redshift supernovae, Astrophys. J. 517(2), 565 (1999)
https://doi.org/10.1086/307221
11 A. G. Riess, A. V. Filippenko, P.Challis, A. Clocchiatti, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and J. Tonry, Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116(3), 1009 (1998)
https://doi.org/10.1086/300499
12 M. Kowalski, D.Rubin, G. Aldering, R. J. Agostinho, A. Amadon, , Improved cosmological constraints from new, old, and combined supernova data sets, Astrophys. J. 686(2), 749 (2008)
https://doi.org/10.1086/589937
13 N. Suzuki, D. Rubin, C. Lidman, G. Aldering, R. Amanullah, , The Hubble space telescope cluster supernova survey (v): Improving the dark-energy constraints above z>1 and building an early-type-hosted supernova sample, Astrophys. J. 746(1), 85 (2012)
https://doi.org/10.1088/0004-637X/746/1/85
14 C. L. Bennett, R. S. Hill, G. Hinshaw, M. R. Nolta, N. Odegard, L. Page, D. N. Spergel, J. L. Weiland, E. L. Wright, M. Halpern, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, G. S. Tucker, and E. Wollack, First-Year Wilkinson Microwave Anisotropy Probe (WMAP)Observations: Foreground emission, Astrophys. J. Suppl. 148(1), 97 (2003)
https://doi.org/10.1086/377252
15 D. N. Spergel, L. Verde, H. V. Peiris, E. Komatsu, M. R. Nolta, C. L. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, L. Page, G. S. Tucker, J. L. Weiland, E. Wollack, and E. L. Wright, First-Year Wilkinson Microwave Anisotropy Probe (WMAP)Observations: Determination of cosmological parameters, Astrophys. J. Suppl. 148(1), 175 (2003)
https://doi.org/10.1086/377226
16 P. A. R. Ade, (Planck Collaboration), Planck 2013 results (XXIII): Isotropy and statistics of the CMB, Astron. Astrophys. 571, A23 (2014)
https://doi.org/10.1051/0004-6361/201321534
17 W. C. Hernandez and C. W. Misner, Observer time as a coordinate in relativistic spherical hydrodynamics, Astrophys. J. 143, 452 (1966)
https://doi.org/10.1086/148525
18 M. M. May and R. H. White, Hydrodynamic calculations of general-relativistic collapse, Phys. Rev. 141(4), 1232 (1966)
https://doi.org/10.1103/PhysRev.141.1232
19 R. C. Tolman, Static solutions of Einstein’s field equations for spheres of fluid, Phys. Rev. 55(4), 364 (1939)
https://doi.org/10.1103/PhysRev.55.364
20 J. R. Oppenheimer and G. M. Volkoff, On massive neutron cores, Phys. Rev. 55(4), 374 (1939)
https://doi.org/10.1103/PhysRev.55.374
21 H. Stephani, D. Kramer, M. MacCallum, and C. Hoenselaers, Exact Solutions to Einstein’s Field Equations, Cambridge University Press, 2009
22 F. Melia and M. Abdelqader, The cosmological spacetime, Int. J. Mod. Phys. D 18(12), 1889 (2009)
https://doi.org/10.1142/S0218271809015746
23 F. Melia and A. Shevchuk, The Rh= ct universe, Mon. Not. R. Astron. Soc. 419(3), 2579 (2011)
https://doi.org/10.1111/j.1365-2966.2011.19906.x
24 R. Jimenez and A. Loeb, Constraining cosmological parameters based on relative galaxy ages, Astrophys. J. 573(1), 37 (2002)
https://doi.org/10.1086/340549
25 F. Melia and R. S. Maier, Cosmic chronometers in the Rh= ctuniverse, Mon. Not. R. Astron. Soc. 432(4), 2669 (2013)
https://doi.org/10.1093/mnras/stt596
26 B. E. Schaefer, Gamma-ray burst Hubble diagram to z= 4.5, Astrophys. J. 583(2), L67 (2003)
https://doi.org/10.1086/368104
27 G. Ghirlanda, G. Ghisellini, and D. Lazzati, The collimation-corrected gamma-ray burst energies correlate with the peak energy of their vFv spectrum, Astrophys. J. 616(1), 331 (2004)
https://doi.org/10.1086/424913
28 E. Liang and B. Zhang, Model-independent multivariable gamma-ray burst luminosity indicator and its possible cosmological implications, Astrophys. J. 633(2), 611 (2005)
https://doi.org/10.1086/491594
29 J. J. Wei, X. F. Wu, and F. Melia, The gamma-ray burst Hubble diagram and its implications for cosmology, Astrophys. J. 772(1), 43 (2013)
https://doi.org/10.1088/0004-637X/772/1/43
30 F. Melia, High-z quasars in the Rh= ct universe, Astrophys. J. 764(1), 72 (2013)
https://doi.org/10.1088/0004-637X/764/1/72
31 J. J. Wei, X. F. Wu, F. Melia, and R. S. Maier, A comparative analysis of the supernova legacy survey sample with ∧CDM and the Rh= ct universe, Astron. J. 149(3), 102 (2015)
https://doi.org/10.1088/0004-6256/149/3/102
32 A. Font-Ribera, D. Kirkby, N. Busca, J. Miralda-Escudé, N. P. Ross, , Quasar-Lyman α forest cross-correlation from BOSS DR11: Baryon acoustic oscillations, J. Cosmol. Astropart. Phys. 05, 027 (2014)
33 T. Delubac, J. E. Bautista, N. G. Busca, J. Rich, D. Kirkby, , Astronomy & Astrophysics, Baryon Acoustic Oscillations in the Ly forest of BOSS DR11 quasars, Astron. Astrophys. 574, A59 (2015), arXiv: 1404.1801
https://doi.org/10.1051/0004-6361/201423969
34 F. Melia and M. L. Corredoira, Alcock-Paczynski test with model-independent BAO Data, Astrophys. J. 2015 (submitted), arXiv: 1503.05052
[1] Xiang-Ru Li, Wo-Liang Yu, Xi-Long Fan, G. Jogesh Babu. Some optimizations on detecting gravitational wave using convolutional neural network[J]. Front. Phys. , 2020, 15(5): 54501-.
[2] He Gao, Shun-Ke Ai, Zhou-Jian Cao, Bing Zhang, Zhen-Yu Zhu, Ang Li, Nai-Bo Zhang, Andreas Bauswein. Relation between gravitational mass and baryonic mass for non-rotating and rapidly rotating neutron stars[J]. Front. Phys. , 2020, 15(2): 24603-.
[3] Bai-Jiong Lin, Xiang-Ru Li, Wo-Liang Yu. Binary neutron stars gravitational wave detection based on wavelet packet analysis and convolutional neural networks[J]. Front. Phys. , 2020, 15(2): 24602-.
[4] Hua-Mei Luo, Wenbin Lin, Zu-Cheng Chen, Qing-Guo Huang. Extraction of gravitational wave signals with optimized convolutional neural network[J]. Front. Phys. , 2020, 15(1): 14601-.
[5] Bing Zhang. The delay time of gravitational wave – gamma-ray burst associations[J]. Front. Phys. , 2019, 14(6): 64402-.
[6] Deng Pan, Hong-Xing Xu. Gravitational field around black hole induces photonic spin–orbit interaction that twists light[J]. Front. Phys. , 2017, 12(5): 128102-.
[7] Fulvio Melia. The zero active mass condition in Friedmann–Robertson–Walker cosmologies[J]. Front. Phys. , 2017, 12(1): 129802-.
[8] Hongwei Xiong. Repulsive gravitational effect of a quantum wave packet and experimental scheme with superfluid helium[J]. Front. Phys. , 2015, 10(4): 100401-.
[9] Ram Gopal Vishwakarma. Mysteries of Rik = 0: A novel paradigm in Einstein’s theory of gravitation[J]. Front. Phys. , 2014, 9(1): 98-112.
[10] Gabriela González, Andrea Viceré, Linqing Wen. Gravitational wave astronomy[J]. Front. Phys. , 2013, 8(6): 771-793.
[11] Fa-Bo Feng. Radio jets and galaxies as cosmic string probes[J]. Front. Phys. , 2012, 7(4): 461-470.
[12] Zhao-ying WANG (王兆英), Tao CHEN (陈涛), Xiao-long WANG (王肖隆), Zhang ZHANG (张璋), Yun-fei XU (徐云飞), Qiang LIN (林强). A precision analysis and determination of the technical requirements of an atom interferometer for gravity measurement[J]. Front Phys Chin, 2009, 4(2): 174-178.
[13] Vitaly N. MELNIKOV. Models of G time variations in diverse dimensions[J]. Front Phys Chin, 2009, 4(1): 75-93.
[14] HU Zhong-kun, LIU Qi, LUO Jun. Determination of the gravitational constant G[J]. Front. Phys. , 2006, 1(4): 449-457.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed