Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2016, Vol. 11 Issue (4) : 110401    https://doi.org/10.1007/s11467-016-0561-x
RESEARCH ARTICLE
Immirzi parameter and quasinormal modes in four and higher spacetime dimensions
Xiang-Dong Zhang1,2,*()
1. Department of Physics, South China University of Technology, Guangzhou 510641, China
2. Institute for Quantum Gravity, University of Erlangen-Nürnberg, Staudtstraβe 7 / B2, 91058 Erlangen, Germany
 Download: PDF(145 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

There is a one-parameter quantization ambiguity in loop quantum gravity, which is called the Immirzi parameter. In this paper, we fix this free parameter by considering the quasinormal mode spectrum of black holes in four and higher spacetime dimensions. As a consequence, our result is consistent with the Bekenstein–Hawking entropy of a black hole. Moreover, we also give a possible quantum gravity explanation of the universal ln 3 behavior of the quasinormal mode spectrum.

Keywords Immirzi parameter      quasinormal mode      loop quantum gravity     
Corresponding Author(s): Xiang-Dong Zhang   
Online First Date: 19 April 2016    Issue Date: 08 June 2016
 Cite this article:   
Xiang-Dong Zhang. Immirzi parameter and quasinormal modes in four and higher spacetime dimensions[J]. Front. Phys. , 2016, 11(4): 110401.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-016-0561-x
https://academic.hep.com.cn/fop/EN/Y2016/V11/I4/110401
1 C. Rovelli, Quantum Gravity, Cambridge University Press, 2004
https://doi.org/10.1017/CBO9780511755804
2 T. Thiemann, Modern Canonical Quantum General Relativity, Cambridge University Press, 2007
https://doi.org/10.1017/CBO9780511755682
3 A. Ashtekar and J. Lewandowski, Background independent quantum gravity: A status report, Class. Quantum Gravity 21(15), R53 (2004)
https://doi.org/10.1088/0264-9381/21/15/R01
4 M. Han, Y. Ma, and W. Huang, Fundamental structure of loop quantum gravity, Int. J. Mod. Phys. D 16(09), 1397 (2007)
https://doi.org/10.1142/S0218271807010894
5 A. Ashtekar and P. Singh, Loop quantum cosmology: A status report, Class. Quantum Gravity 28(21), 213001 (2011)
https://doi.org/10.1088/0264-9381/28/21/213001
6 C. Rovelli, Loop quantum gravity: The first 25 years, Class. Quantum Gravity 28(15), 153002 (2011)
https://doi.org/10.1088/0264-9381/28/15/153002
7 J. Barbero and A. Perez, Quantum geometry and black holes, arXiv: 1501.02963
8 C. Rovelli and T. Thiemann, Immirzi parameter in quantum general relativity, Phys. Rev. D 57(2), 1009 (1998)
https://doi.org/10.1103/PhysRevD.57.1009
9 O. Dreyer, Quasinormal modes, the area spectrum, and black hole entropy, Phys. Rev. Lett. 90(8), 081301 (2003)
https://doi.org/10.1103/PhysRevLett.90.081301
10 S. Hod, Bohr's correspondence principle and the area spectrum of quantum black holes, Phys. Rev. Lett. 81(20), 4293 (1998)
https://doi.org/10.1103/PhysRevLett.81.4293
11 L. Motl, An analytical computation of asymptotic Schwarzschild quasinormal frequencies, Adv. Theor. Math. Phys. 6, 1135 (2003)
https://doi.org/10.4310/ATMP.2002.v6.n6.a3
12 A. Corichi, Quasinormal modes, black hole entropy, and quantum geometry, Phys. Rev. D 67(8), 087502 (2003)
https://doi.org/10.1103/PhysRevD.67.087502
13 Y. Ling and H. Zhang, Quasinormal modes prefer supersymmetry? Phys. Rev. D 68(10), 101501 (2003)
https://doi.org/10.1103/PhysRevD.68.101501
14 L. Motl and A. Neitzke, Asymptotic black hole quasinormal frequencies, Adv. Theor. Math. Phys. 7(2), 307 (2003)
https://doi.org/10.4310/ATMP.2003.v7.n2.a4
15 V. Cardoso, J. Lemos, and S. Yoshida, Quasinormal modes of Schwarzschild black holes in four and higher dimensions, Phys. Rev. D 69(4), 044004 (2004)
https://doi.org/10.1103/PhysRevD.69.044004
16 N. Bodendorfer, T. Thiemann, and A. Thurn, New variables for classical and quantum gravity in all dimensions (I): Hamiltonian analysis, Class. Quantum Gravity 30(4), 045001 (2013)
https://doi.org/10.1088/0264-9381/30/4/045001
17 N. Bodendorfer, T. Thiemann, and A. Thurn, New variables for classical and quantum gravity in all dimensions (II): Lagrangian analysis, Class. Quantum Gravity 30(4), 045002 (2013)
https://doi.org/10.1088/0264-9381/30/4/045002
18 N. Bodendorfer, T. Thiemann, and A. Thurn, New variables for classical and quantum gravity in all dimensions (III): Quantum theory, Class. Quantum Gravity 30(4), 045003 (2013)
https://doi.org/10.1088/0264-9381/30/4/045003
19 N. Bodendorfer, T. Thiemann, and A. Thurn, New variables for classical and quantum gravity in all dimensions (IV): Matter coupling, Class. Quantum Gravity 30(4), 045004 (2013)
https://doi.org/10.1088/0264-9381/30/4/045004
20 N. Bodendorfer, Black hole entropy from loop quantum gravity in higher dimensions, Phys. Lett. B 726(4-5), 887 (2013)
https://doi.org/10.1016/j.physletb.2013.09.043
21 X. Zhang, Higher dimensional loop quantum cosmology, arXiv: 1506.05597
[1] Xiang-Dong Zhang, Yong-Ge Ma. Loop quantum modified gravity and its cosmological application[J]. Front. Phys. , 2013, 8(1): 80-93.
[2] Qiao BI (毕桥), Li-li LIU(刘莉丽), Jin-qing FANG(方锦清). Condensation and evolution of a space–time network[J]. Front Phys Chin, 2009, 4(2): 231-234.
[3] MA Yong-ge. Semiclassical states in loop quantum gravity: an introduction[J]. Front. Phys. , 2006, 1(2): 125-134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed