Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2016, Vol. 11 Issue (4) : 115202    https://doi.org/10.1007/s11467-016-0563-8
RESEARCH ARTICLE
Effect of pulse slippage on density transition-based resonant third-harmonic generation of short-pulse laser in plasma
Vishal Thakur,Niti Kant()
Department of Physics, Lovely Professional University, Phagwara-144411, Punjab, India
 Download: PDF(317 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The resonant third-harmonic generation of a self-focusing laser in plasma with a density transition was investigated. Because of self-focusing of the fundamental laser pulse, a transverse intensity gradient was created, which generated a plasma wave at the fundamental wave frequency. Phase matching was satisfied by using a Wiggler magnetic field, which provided additional angular momentum to the third-harmonic photon to make the process resonant. An enhancement was observed in the resonant third-harmonic generation of an intense short-pulse laser in plasma embedded with a magnetic Wiggler with a density transition. A plasma density ramp played an important role in the self-focusing, enhancing the third-harmonic generation in plasma. We also examined the effect of the Wiggler magnetic field on the pulse slippage of the third-harmonic pulse in plasma. The pulse slippage was due to the group-velocity mismatch between the fundamental and third-harmonic pulses.

Keywords short pulse laser      pulse slippage      third harmonic generation      plasma     
Corresponding Author(s): Niti Kant   
Online First Date: 17 March 2016    Issue Date: 08 June 2016
 Cite this article:   
Vishal Thakur,Niti Kant. Effect of pulse slippage on density transition-based resonant third-harmonic generation of short-pulse laser in plasma[J]. Front. Phys. , 2016, 11(4): 115202.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-016-0563-8
https://academic.hep.com.cn/fop/EN/Y2016/V11/I4/115202
1 J. K. Sharma and J. Parashar, Parametric instability of a lower hybrid wave in a dusty plasma, Indian J. Pure & Appl. Phys. 41, 290 (2003)
2 J. K. Sharma, J. Parashar, and A. S. Mehta, Relativistic stimulated Raman scattering in a plasma channel, Indian J. Pure & Appl. Phys. 41, 73 (2003)
3 J. Parasher and H. D. Pandey, Second-harmonic generation of laser radiation in a plasma with a density ripple, IEEE Trans. Plasma Sci. 20(6), 996 (1992)
https://doi.org/10.1109/27.199564
4 J. Parashar and A. K. Sharma, Second harmonic generation by an obliquely incident laser on a vacuum plasma interface, Europhys. Lett. 41(4), 389 (1998)
https://doi.org/10.1209/epl/i1998-00162-1
5 T. K. Pramanik and D. P. Bhattacharya, Harmonic generation in semiconductors in the presence of deep repulsive traps, Solid State Commun. 74(6), 539 (1990)
https://doi.org/10.1016/0038-1098(90)90342-9
6 N. Kant, D. N. Gupta, and H. Suk, Resonant third-harmonic generation of a short-pulse laser from electron-hole plasmas, Phys. Plasmas 19(1), 013101 (2012)
https://doi.org/10.1063/1.3672519
7 J. F. Han, D. N. Gao, H. Zhang, X. Y. Wang, and W. S. Duan, Effects of the dust size distribution in one-dimensional quantum dusty plasma, Front. Phys. 10(5), 105201 (2015)
https://doi.org/10.1007/s11467-015-0506-9
8 H. H. Zhang, D. C. Mao, and Y. N. Wang, Current neutralization and plasma polarization for intense ion beams propagating through magnetized background plasmas in a two-dimensional slab approximation, Front. Phys. 9(2), 226 (2014)
https://doi.org/10.1007/s11467-013-0406-9
9 X. G. Wang and Q. B. Luan, Low frequency whistler waves excited in fast magnetic reconnection processes, Front. Phys. 8(5), 585 (2013)
https://doi.org/10.1007/s11467-013-0369-x
10 V. Malka, A. Modena, Z. Najmudin, A. E. Dangor, C. E. Clayton, K. A. Marsh, C. Joshi, C. Danson, D. Neely, and F. N. Walsh, Second harmonic generation and its interaction with relativistic plasma waves driven by forward Raman instability in underdense plasmas, Plasma Phys. 4(4), 1127 (1997)
https://doi.org/10.1063/1.872201
11 E. Esarey, A. Ting, P. Sprangle, D. Umstadter, and X. Liu, Nonlinear analysis of relativistic harmonic generation by intense lasers in plasmas, IEEE Trans. Plasma Sci. 21(1), 95 (1993)
https://doi.org/10.1109/27.221107
12 A. Kuditcher, B. G. Hoover, M. P. Hehlen, E. N. Leith, S. C. Rand, and M. P. Shih, Ultrafast, cross-correlated harmonic imaging through scattering media, Appl. Opt. 40(1), 45 (2001)
https://doi.org/10.1364/AO.40.000045
13 F. Théberge, N. Aközbek, W. Liu, J. F. Gravel, and S. L. Chin, Third harmonic beam profile generated in atmospheric air using femtosecond laser pulses, Opt. Commun. 245(1-6), 399 (2005)
https://doi.org/10.1016/j.optcom.2004.10.020
14 N. Aközbek, A. Iwasaki, A. Becker, M. Scalora, S. L. Chin, and C. M. Bowden, Third harmonic generation and self-channeling in air using high-power femtosecond laser pulses, Phys. Rev. Lett. 89(14), 143901 (2002)
https://doi.org/10.1103/PhysRevLett.89.143901
15 P. Sprangle, E. Esarey, and A. Ting, Nonlinear interaction of intense laser pulses in plasmas, Phys. Rev. Lett. 41, 4463 (1990)
https://doi.org/10.1103/PhysRevA.41.4463
16 E. Esarey and P. Sprangle, Generation of stimulated backscattered harmonic radiation from intense-laser interactions with beams and plasmas, Phys. Rev. A 45(8), 5872 (1992)
https://doi.org/10.1103/PhysRevA.45.5872
17 P. Sprangle, E. Esarey, and A. Ting, Nonlinear theory of intense laser-plasma interactions, Phys. Rev. Lett. 64(17), 2011 (1990)
https://doi.org/10.1103/PhysRevLett.64.2011
18 S. Kaur and A. K. Sharma, Resonant third harmonic generation in a laser produced thin foil plasma,Phys. Plasmas 15(10), 102705 (2008)
https://doi.org/10.1063/1.2998827
19 N. Kant and V. Thakur, Enhanced resonant second harmonic generation in plasma based on density transition, Nukleonika. 60(2), 355 (2015)
https://doi.org/10.1515/nuka-2015-0036
20 N. Kant and A. K. Sharma, Effects of pulse slippage on resonant second harmonic generation of a short pulse laser in a plasma., J. Phys. D Appl. Phys. 37(7), 998 (2004)
https://doi.org/10.1088/0022-3727/37/7/007
21 J. Rajput, N. Kant, H. Singh, and V. Nanda, Resonant third harmonic generation of a short pulse laser in plasma by applying a wiggler magnetic field, Opt. Commun. 282(23), 4614 (2009)
https://doi.org/10.1016/j.optcom.2009.08.042
22 N. Kant, D. N. Gupta, and H. Suk, Generation of second harmonic radiations of a self-focusing laser from plasma with density-transition, Phys. Lett. A 375(35), 3134 (2011)
https://doi.org/10.1016/j.physleta.2011.06.062
23 C. S. Liu and V. K. Tripathi, Third harmonic generation of a short pulse laser in a plasma density ripple created by a machining beam, Phys. Plasmas 15(2), 023106 (2008)
https://doi.org/10.1063/1.2836618
24 U. Verma and A. K. Sharma, Effect of laser self-defocusing on third harmonic generation in a tunnel ionizing gas, Phys. Plasmas 16(1), 013101 (2009)
https://doi.org/10.1063/1.3054532
25 M. S. Sodha, R. K. Khanna, and V. K. Tripathi, Nonlinear third-harmonic generation in a plasma by a Gaussian electromagnetic beam: Effect of self-focusing, Phys. Rev. A 12(1), 219 (1975)
https://doi.org/10.1103/PhysRevA.12.219
26 N. Kant, M. A. Wani, and A. Kumar, Self-focusing of Hermite-Gaussian laser beams in Plasma under plasma density ramp, Opt. Commun. 285(21-22), 4483 (2012)
https://doi.org/10.1016/j.optcom.2012.05.065
27 V. Nanda, N. Kant, and M. A. Wani, Self-focusing of a Hermite-cosh Gaussian laser beam in a magnetoplasma with ramp density profile, Phys. Plasmas 20(11), 113109 (2013)
https://doi.org/10.1063/1.4833635
28 V. Nanda and N. Kant, Enhanced relativistic self-focusing of Hermite-cosh-Gaussian (HChG) laser beam in plasma under density transition, Phys. Plasmas 21(4), 042101 (2014)
https://doi.org/10.1063/1.4870080
29 V. Nanda and N. Kant, Strong Self-Focusing of a cosh-Gaussian Laser Beam in collisionless magneto-plasma under plasma density ramp, Phys. Plasmas 21(7), 072111 (2014)
https://doi.org/10.1063/1.4889862
30 M. Aggarwal, S. Vij, and N. Kant, Wiggler magnetic field assisted second harmonic generation in clusters, Eur. Phys. J. 69, 149 (2015)
https://doi.org/10.1140/epjd/e2015-60108-6
31 S. Vij, N. Kant, and M. Aggarwal, Resonant third harmonic generation in clusters with density ripple: Effect of pulse slippage, Laser and Part. Beams 1, 1 (2016)
https://doi.org/10.1017/S0263034615000658
32 R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, T. Usmanov, M. Baba, and H. Kuroda, Third harmonic generation in plasma plumes using picosecond and femtosecond laser pulses, J. Opt. 12(5), 055202 (2010)
https://doi.org/10.1088/2040-8978/12/5/055202
[1] Sen Jia, Xingyu Zhou, Chengping Shen. Experimental review of the ϒ(1S, 2S, 3S) physics at e+e colliders and the LHC[J]. Front. Phys. , 2020, 15(6): 64301-.
[2] Shuai Zhang, Sahar Sheta, Zong-Yu Hou, Zhe Wang. On the improvement of signal repeatability in laser-induced air plasmas[J]. Front. Phys. , 2018, 13(2): 135201-.
[3] Cong Li (李聪),Chun-Lei Feng (冯春雷),Hassan Yousefi Oderji,Guang-Nan Luo (罗广南),Hong-Bin Ding (丁洪斌). Review of LIBS application in nuclear fusion technology[J]. Front. Phys. , 2016, 11(6): 114214-.
[4] Ali Khumaeni,Katsuaki Akaoka,Masabumi Miyabe,Ikuo Wakaida. The role of microwaves in the enhancement of laser-induced plasma emission[J]. Front. Phys. , 2016, 11(4): 114209-.
[5] Shi-Lei Zhong (钟石磊),Yuan Lu (卢渊),Wei-Jin Kong (孔伟金),Kai Cheng (程凯),Ronger Zheng (郑荣儿). Quantitative analysis of lead in aqueous solutions by ultrasonic nebulizer assisted laser induced breakdown spectroscopy[J]. Front. Phys. , 2016, 11(4): 114202-.
[6] S. Ali. Potential distribution around a test charge in a positive dust-electron plasma[J]. Front. Phys. , 2016, 11(3): 115201-.
[7] Fang-Fang Chen,Xue-Jiao Su,Wei-Dong Zhou. Effect of parameters on Si plasma emission in collinear double-pulse laser-induced breakdown spectroscopy[J]. Front. Phys. , 2015, 10(5): 104207-.
[8] Juan-Fang Han,Dong-Ning Gao,Heng Zhang,Xiao-Yun Wang,Wen-Shan Duan. Effects of the dust size distribution in one-dimensional quantum dusty plasma[J]. Front. Phys. , 2015, 10(5): 105201-.
[9] Xiu Jun-Shan(修俊山), Bai Xue-Shi(白雪石), Vincent Motto-Ros, Yu Jin(俞进). Characteristics of indirect laser-induced plasma from a thin film of oil on a metallic substrate[J]. Front. Phys. , 2015, 10(2): 104204-.
[10] C. S. Hofmann, G. Günter, H. Schempp, N. L. M. Müller, A. Faber, H. Busche, M. Robert-de-Saint-Vincent, S. Whitlock, M. Weidemüller. An experimental approach for investigating many-body phenomena in Rydberg-interacting quantum systems[J]. Front. Phys. , 2014, 9(5): 571-586.
[11] Zhi-Bo Ni, Xing-Long Chen, Hong-Bo Fu, Jing-Ge Wang, Feng-Zhong Dong. Study on quantitative analysis of slag based on spectral normalization of laser-induced plasma image[J]. Front. Phys. , 2014, 9(4): 439-445.
[12] Zhang-Hu Hu, Mao-Du Chen, You-Nian Wang. Current neutralization and plasma polarization for intense ion beams propagating through magnetized background plasmas in a two-dimensional slab approximation[J]. Front. Phys. , 2014, 9(2): 226-233.
[13] Xia-Fen Li, Wei-Dong Zhou, Zhi-Feng Cui. Temperature and electron density of soil plasma generated by LA-FPDPS[J]. Front. Phys. , 2012, 7(6): 721-727.
[14] Yong Zhang, Yun-Hai Jia, Jin-Wen Chen, Xue-Jing Shen, Lei Zhao, Chun Yang, Yong-Yan Chen, Yong-Hui Zhang, Peng-Cheng Han. Study on parameters influencing analytical performance of laser-induced breakdown spectroscopy[J]. Front. Phys. , 2012, 7(6): 714-720.
[15] Jin Yu (俞进), Qianli Ma (马千里), Vincent Motto-Ros, Wenqi Lei (雷文奇), Xiaochun Wang (王晓纯), Xueshi Bai (白雪石). Generation and expansion of laser-induced plasma as a spectroscopic emission source[J]. Front. Phys. , 2012, 7(6): 649-669.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed