|
|
Laser cooling of internal degrees of freedom of molecules |
R. Horchani( ) |
College of Arts and Applied Sciences, Dhofar University, Salalah, Oman |
|
|
Abstract Optical pumping techniques using laser fields combined with photo-association of ultracold atoms leads to control of the vibrational and/or rotational population of molecules. In this study, we review the basic concepts and main steps that should be followed, including the excitation schemes and detection techniques used to achieve ro-vibrational cooling of Cs2 molecules. We also discuss the extension of this technique to other molecules. In addition, we present a theoretical model used to support the experiment. These simulations can be widely used for the preparation of various experiments because they allow the optimization of several important experimental parameters.
|
Keywords
cold molecule
photo-association
optical pumping
vibrational and rotational cooling
|
Corresponding Author(s):
R. Horchani
|
Online First Date: 31 March 2016
Issue Date: 08 June 2016
|
|
1 |
L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, Cold and ultracold molecules: Science, technology and applications, New J. Phys. 11(5), 055049 (2009)
https://doi.org/10.1088/1367-2630/11/5/055049
|
2 |
J. J. Hudson, D. M. Kara, I. J. Smallman, B. E. Sauer, M. R. Tarbutt, and E. A. Hinds, Improved measurement of the shape of the electron, Nature 473, 493 (2011)
https://doi.org/10.1038/nature10104
|
3 |
D. S. Jin and J. Ye, Introduction to ultracold molecules: New frontiers in quantum and chemical physics, Chem. Rev. 112(9), 4801 (2012)
https://doi.org/10.1021/cr300342x
|
4 |
M. Shapiro and P. Brumer, Principles of the Quantum Control of Molecular Processes, Wiley-Interscience, NJ: Hoboken, 2003
|
5 |
D. D'Alessandro, Introduction to Quantum Control and Dynamics, Boca Raton: Chapman and Hall, 2007
https://doi.org/10.1201/9781584888833
|
6 |
G. Quéméner and P. S.Julienne, Ultracold molecules under control! Chem. Rev. 112(9), 4949 (2012)
https://doi.org/10.1021/cr300092g
|
7 |
G. Morigi, P. W. H. Pinkse, M. Kowalewski, and R. de Vivie-Riedle, Cavity cooling of internal molecular motion, Phys. Rev. Lett. 99(7), 073001 (2007)
https://doi.org/10.1103/PhysRevLett.99.073001
|
8 |
D. J. Tannor, R. Kosloff, and A. Bartana, Laser cooling of internal degrees of freedom of molecules by dynamically trapped states, Faraday Discuss. 113, 365 (1999)
https://doi.org/10.1039/a902103e
|
9 |
S. G. Schirmer, Laser cooling of internal molecular degrees of freedom for vibrationally hot molecules, Phys. Rev. A 63(1), 013407 (2000)
https://doi.org/10.1103/PhysRevA.63.013407
|
10 |
A. Bartana, R. Kosloff, and D. J. Tannor, Laser cooling of molecular internal degrees of freedom by a series of shaped pulses, J. Chem. Phys. 99(1), 196 (1993)
https://doi.org/10.1063/1.465797
|
11 |
S. A. Rice, A. R. Dinner, C. Brif, R. Chakrabarti, and H. Rabitz, Adv. Chem. Phys. 148, edited by S. A. Rice and A. R. Dinner, Wiley, 2011
|
12 |
E. Shuman, J. Barry, and D. DeMille, Laser cooling of a diatomic molecule, Nature 467(7317), 820 (2010)
https://doi.org/10.1038/nature09443
|
13 |
J. F. Barry, E. S. Shuman, E. B. Norrgard, and D. De-Mille, Laser radiation pressure slowing of a molecular beam, Phys. Rev. Lett. 108(10), 103002 (2012)
https://doi.org/10.1103/PhysRevLett.108.103002
|
14 |
M. T. Hummon, M. Yeo, B. K. Stuhl, A. L. Collopy, Y. Xia, and J. Ye, Magneto-optical trapping of diatomic molecules, arXiv: 1209.4069v1
|
15 |
M. Zeppenfeld, B. G. U. Englert, R. Glöckner, A. Prehn, M. Mielenz, C. Sommer, L. D. van Buuren, M. Motsch, and G. Rempe, Sisyphus cooling of electrically trapped polyatomic molecules, Nature 491(7425), 570 (2012)
https://doi.org/10.1038/nature11595
|
16 |
J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, R. Hart, J. Aldegunde, J. M. Hutson, and H.C. Nägerl, An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice, Nat. Phys. 6(4), 265 (2010)
https://doi.org/10.1038/nphys1533
|
17 |
S. Ospelkaus, K.-K. Ni, G. Quéméner, B. Neyenhuis, D. Wang, M. H. G. de Miranda, J. L. Bohn, J. Ye, and D. S. Jin, Controlling the hyperfine state of rovibronic ground-state polar molecules, Phys. Rev. Lett. 104, 030402 (2010), arXiv: 0908.3931
https://doi.org/10.1103/PhysRevLett.104.030402
|
18 |
G. Pichler, S. Milosevic, D. Viza, and R. Beuc, Diffuse bands in the visible absorption spectra of dense alkali vapours, J. Phys. At. Mol. Opt. Phys. 16(24), 4619 (1983)
https://doi.org/10.1088/0022-3700/16/24/017
|
19 |
R. B. Jones, J. H. Schloss, and J. G. Eden, Excitation spectra for the photoassociation of Kr–F and Xe–I collision pairs in the ultraviolet (208–258 nm), J. Chem. Phys. 98(6), 4317 (1993)
https://doi.org/10.1063/1.465013
|
20 |
U. Marvet and M. Dantus, Femtosecond photoassociation spectroscopy: Coherent bond formation, Chem. Phys. Lett. 245(4-5), 393 (1995)
https://doi.org/10.1016/0009-2614(95)01018-5
|
21 |
T. Ban, S. Ter-Avetisyan, R. Beuc, H. Skenderovic, and G. Pichler, Photoassociation of cesium atoms into the double minimum state, Chem. Phys. Lett. 313(1-2), 110 (1999)
https://doi.org/10.1016/S0009-2614(99)01049-0
|
22 |
A. Fioretti, D. Comparat, A. Crubellier, O. Dulieu, F. Masnou-Seeuws, and P. Pillet, Formation of cold Cs2 molecules through photo association, Phys. Rev. Lett. 80(20), 4402 (1998)
https://doi.org/10.1103/PhysRevLett.80.4402
|
23 |
H. Lignier, A. Fioretti, R. Horchani, C. Drag, N. Bouloufa, M. Allegrini, O. Dulieu, L. Pruvost, P. Pillet, and D. Comparat, Deeply bound cold caesium molecules formed after 0-g resonant coupling, Phys. Chem. Chem. Phys. 13(42), 18910 (2011)
https://doi.org/10.1039/c1cp21488h
|
24 |
J. Ma, W. Liu, J. Yang, J. Wu, W. Sun, V. S. Ivanov, A. S. Skublov, V. B. Sovkov, X. Dai, and S. Jia, New observation and combined analysis of the Cs2 0-g, 0+u, and 1g states at the asymptotes 6S1/2+ 6P1/2 and 6S1/2+ 6P3/2, J. Chem. Phys. 141(24), 244310 (2014)
https://doi.org/10.1063/1.4904265
|
25 |
A. Fioretti, D. Comparat, C. Drag, C. Amiot, O. Dulieu, F. Masnou-Seeuws, and P. Pillet, Photoassociative spectroscopy of the Cs2 0-g long-range state, Eur. Phys. J. D 5(3), 389 (1999)
https://doi.org/10.1007/s100530050271
|
26 |
N. Bouloufa, A. Crubellier, and O. Dulieu, Reexamination of the 0g pure long-range state of Cs2: Prediction of missing levels in the photoassociation spectrum, Phys. Rev. A 75(5), 052501 (2007)
https://doi.org/10.1103/PhysRevA.75.052501
|
27 |
K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering, Rev. Mod. Phys. 78(2), 483 (2006)
https://doi.org/10.1103/RevModPhys.78.483
|
28 |
R. Horchani, H. Lignier, N. Bouloufa-Maafa, A. Fioretti, P. Pillet, and D. Comparat, Triplet-singlet conversion by broadband optical pumping, Phys. Rev. A 85(3), 030502 (2012)
https://doi.org/10.1103/PhysRevA.85.030502
|
29 |
M. Raab, G. Höning, W. Demtröder, and C. R. Vidal, High resolution laser spectroscopy of Cs2 (II): Doppler-free polarization spectroscopy of the C 1Π u ←X 1Σ+ g system, J. Chem. Phys. 76(9), 4370 (1982)
https://doi.org/10.1063/1.443571
|
30 |
W. Weickenmeier, U. Diemer, M. Wahl, M. Raab, W. Demtröder, and W. Müller, Accurate ground state potential of Cs2 up to the dissociation limit, J. Chem. Phys. 82(12), 5354 (1985)
https://doi.org/10.1063/1.448618
|
31 |
R. L. Brooks and J. L. Hunt, Helium hydride emission spectra at 550 and 640 nm, J. Chem. Phys. 89(3), 7077 (1988)
https://doi.org/10.1063/1.455337
|
32 |
A. Wakim, P. Zabawa, M. Haruza, and N. P. Bigelow, Luminorefrigeration: vibrational cooling of NaCs, Opt. Express 20(14), 16083 (2012)
https://doi.org/10.1364/OE.20.016083
|
33 |
T. Schneider, B. Roth, H. Duncker, I. Ernsting, and S. Schiller, All-optical preparation of molecular ions in the rovibrational ground state, Nat. Phys. 6(4), 275 (2010)
https://doi.org/10.1038/nphys1605
|
34 |
P. F. Staanum, K. Höjbjerre, P. S. Skyt, A. K. Hansen, and M. Drewsen, Rotational laser cooling of vibrationally and translationally cold molecular ions, Nat. Phys. 6(4), 271 (2010)
https://doi.org/10.1038/nphys1604
|
35 |
M. Viteau, A. Chotia, M. Allegrini, N. Bouloufa, O. Dulieu, D. Comparat, and P. Pillet, Optical pumping and vibrational cooling of molecules, Science 321(5886), 232 (2008)
https://doi.org/10.1126/science.1159496
|
36 |
D. Sofikitis, S. Weber, A. Fioretti, R. Horchani, M. Allegrini, B. Chatel, D. Comparat, and P. Pillet, Molecular vibrational cooling by optical pumping with shaped femtosecond pulses, New J. Phys. 11(5), 055037 (2009)
https://doi.org/10.1088/1367-2630/11/5/055037
|
37 |
A. Kastler, Quelques suggestions concernant la production optique et la détection optique d’une inégalité de population des niveaux de quantifigation spatiale des atomes. Application à l’expérience de Stern et Gerlach et à la résonance magnétique, J. Phys. Radium 11(6), 255 (1950)
https://doi.org/10.1051/jphysrad:01950001106025500
|
38 |
J. T. Bahns, W. C. Stwalley, and P. L. Gould, Laser cooling of molecules: A sequential scheme for rotation, translation, and vibration, J. Chem. Phys. 104(24), 9689 (1996)
https://doi.org/10.1063/1.471731
|
39 |
U. Diemer, R. Duchowicz, M. Ertel, E. Mehdizadeh, W. Demtröder, Doppler-free polarization spectroscopy of the B 1Πu state of Cs2, Chem. Phys. Lett. 164(4), 419 (1989)
https://doi.org/10.1016/0009-2614(89)85231-5
|
40 |
D. Sofikitis, R. Horchani, Xiaolin Li, M. Pichler, M. Allegrini, A. Fioretti, D. Comparat, and P. Pillet, Vibrational cooling of cesium molecules using noncoherent broadband light, Phys. Rev. A 80, 051401(R) (2009)
|
41 |
R. Horchani, Femtosecond laser shaping with digital light processing, Opt. Quantum Electron. 47(8), 3023 (2015)
https://doi.org/10.1007/s11082-015-0188-0
|
42 |
J. Tallant and L. Marcassa, Bull. Am. Phys. Soc. 59, 3004 (2014)
|
43 |
D. Wang, C. Ashbaugh, J. T. Kim, E. E. Eyler, P. L. Gould, and W. C. Stwalley, Rotationally resolved depletion spectroscopy of ultracold KRb molecules, Phys. Rev. A 75(3), 032511 (2007)
https://doi.org/10.1103/PhysRevA.75.032511
|
44 |
K. Aikawa, D. Akamatsu, M. Hayashi, K. Oasa, J. Kobayashi, P. Naidon, T. Kishimoto, M. Ueda, and S. Inouye, Coherent transfer of photoassociated molecules into the rovibrational ground state, Phys. Rev. Lett. 105, 203001 (2010), arXiv: 1008.5034
https://doi.org/10.1103/PhysRevLett.105.203001
|
45 |
I. Manai, R. Horchani, H. Lignier, P. Pillet, D. Comparat, A. Fioretti, and M. Allegrini, Phys. Rev. Lett. 109, 183001 (2012) and Viewpoint: Nicholas Bigelow: Deep molecular cooling, Physics 5, 121 (2012)
https://doi.org/10.1103/Physics.5.121
|
46 |
A. Fioretti, D. Sofikitis, R. Horchani, X. Li, M. Pichler, S. Weber, M. Allegrini, B. Chatel, D. Comparat, and P. Pillet, Cold cesium molecules: from formation to cooling, J. Mod. Opt. 56, 2089 (2009)
https://doi.org/10.1080/09500340903156822
|
47 |
J. T. Bahns, W. C. Stwalley, and P. L. Gould, Laser cooling of molecules: A sequential scheme for rotation, translation, and vibration, J. Chem. Phys. 104(24), 9689 (1996)
https://doi.org/10.1063/1.471731
|
48 |
M. D. Rosa, Laser-cooling molecules, Eur. Phys. J. D 31(2), 395 (2004)
https://doi.org/10.1140/epjd/e2004-00167-2
|
49 |
J. Pérez-Ríos, M. Lepers, and O. Dulieu, Theory of long-range ultracold atom-molecule photoassociation, Phys. Rev. Lett. 115(7), 073201 (2015)
https://doi.org/10.1103/PhysRevLett.115.073201
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|