|
|
Photon condensation: A new paradigm for Bose–Einstein condensation |
Renju Rajan,P. Ramesh Babu,K. Senthilnathan( ) |
Department of Physics, School of Advanced Sciences, VIT University, Vellore, Tamil Nadu 632014, India |
|
|
Abstract Bose–Einstein condensation is a state of matter known to be responsible for peculiar properties exhibited by superfluid Helium-4 and superconductors. Bose–Einstein condensate (BEC) in its pure form is realizable with alkali atoms under ultra-cold temperatures. In this paper, we review the experimental scheme that demonstrates the atomic Bose–Einstein condensate. We also elaborate on the theoretical framework for atomic Bose–Einstein condensation, which includes statistical mechanics and the Gross–Pitaevskii equation. As an extension, we discuss Bose–Einstein condensation of photons realized in a fluorescent dye filled optical microcavity. We analyze this phenomenon based on the generalized Planck’s law in statistical mechanics. Further, a comparison is made between photon condensate and laser. We describe how photon condensate may be a possible alternative for lasers since it does not require an energy consuming population inversion process.
|
Keywords
Bose–Einstein condensation
photon condensation
magneto-optical trap
Gross–Pitaevskii equation
Planck’s radiation law
|
Corresponding Author(s):
K. Senthilnathan
|
Online First Date: 19 April 2016
Issue Date: 08 June 2016
|
|
1 |
F. W. Sears and G. L. Salinger, Thermodynamics, Kinetic Theory, and Statistical Thermodynamics, Philippines: Addison-Wesley, 1975
|
2 |
S. N. Bose, Planck's law and the light quantum hypothesis, Z. Phys. 26(1), 178 (1924)
https://doi.org/10.1007/BF01327326
|
3 |
A. Einstein, Quantum theory of the monoatomic ideal gas, Sitzungsber. Preuss. Akad. Wiss. 1, 3 (1925)
|
4 |
F. London, The ʌ-phenomenon of liquid helium and the Bose-Einstein degeneracy, Nature 141(3571), 643 (1938)
https://doi.org/10.1038/141643a0
|
5 |
L. D. Landau, Theory of the superfluidity of Helium II, Phys. Rev. 60(4), 356 (1941)
https://doi.org/10.1103/PhysRev.60.356
|
6 |
H. J. Metcalf and P. Van der Straten, Laser Cooling and Trapping, New York: Springer-Verlag, 1999
https://doi.org/10.1007/978-1-4612-1470-0
|
7 |
V. S. Letokhov, Laser Control of Atoms and Molecules, New York: Oxford University Press, 2007
|
8 |
C. J. Foot, Atomic Physics, New York: Oxford University Press, 2005
|
9 |
M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Observation of bose-einstein condensation in a dilute atomic vapor, Science 269(5221), 198 (1995)
https://doi.org/10.1126/science.269.5221.198
pmid: 17789847
|
10 |
K. B. Davis, M. Mewes, M. R. Andrews, D. S. Durfee, D. M. Kurn, W. Ketterle, and W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms., Phys. Rev. Lett. 75(22), 3969 (1995)
https://doi.org/10.1103/PhysRevLett.75.3969
pmid: 10059782
|
11 |
S. Blundell, Magnetism in Condensed Matter, New York: Oxford University Press, 2001
|
12 |
Q. Chen and J. Wang, Pseudogap phenomena in ultracold atomic Fermi gases, Front. Phys. 9(5), 539 (2014)
https://doi.org/10.1007/s11467-014-0448-7
|
13 |
M. Fox, Quantum Optics: An Introduction, New York: Oxford University Press, 2006
|
14 |
W. D. Phillips, Laser cooling and trapping of neutral atoms, Rev. Mod. Phys. 70(3), 721 (1998)
https://doi.org/10.1103/RevModPhys.70.721
|
15 |
D. J. Wineland and W. M. Itano, Laser cooling of atoms, Phys. Rev. A 20(4), 1521 (1979)
https://doi.org/10.1103/PhysRevA.20.1521
|
16 |
A. L. Migdall, J. V. Prodan, W. D. Phillips, T. H. Bergeman, and H. J. Metcalf, First observation of magnetically trapped neutral atoms, Phys. Rev. Lett. 54(24), 2596 (1985)
https://doi.org/10.1103/PhysRevLett.54.2596
pmid: 10031386
|
17 |
C. G. Townsend, N. H. Edwards, C. J. Cooper, K. P. Zetie, C. J. Foot, A. M. Steane, P. Szriftgiser, H. Perrin, and J. Dalibard, Phase-space density in the magneto-optical trap, Phys. Rev., A 52(2), 1423 (1995)
https://doi.org/10.1103/PhysRevA.52.1423
pmid: 9912381
|
18 |
C. S. Adams, H. J. Lee, N. Davidson, M. Kasevich, and S. Chu, Evaporative cooling in a crossed dipole trap, Phys. Rev. Lett. 74(18), 3577 (1995)
https://doi.org/10.1103/PhysRevLett.74.3577
pmid: 10058240
|
19 |
P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I. Westbrook, Optical molasses, J. Opt. Soc. Am. B 6(11), 2084 (1989)
https://doi.org/10.1364/JOSAB.6.002084
|
20 |
W. Petrich, M. H. Anderson, J. R. Ensher, and E. A. Cornell, Stable, Tightly confining magnetic trap for evaporative cooling of neutral atoms, Phys. Rev. Lett. 74(17), 3352 (1995)
https://doi.org/10.1103/PhysRevLett.74.3352
pmid: 10058179
|
21 |
C. E. Wieman, D. E. Pritchard, and D. J. Wineland, Atom cooling, trapping, and quantum manipulation, Rev. Mod. Phys. 71(2), S253 (1999)
https://doi.org/10.1103/RevModPhys.71.S253
|
22 |
H. Wu, E. Arimondo, and C. J. Foot, Dynamics of evaporative cooling for Bose-Einstein condensation, Phys. Rev. A 56(1), 560 (1997)
https://doi.org/10.1103/PhysRevA.56.560
|
23 |
F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys. 71(3), 463 (1999)
https://doi.org/10.1103/RevModPhys.71.463
|
24 |
V. M. Pérez-García, N. G. Berloff, P. G. Kevrekidis, V. V. Konotop, and B. A. Malomed, Nonlinear phenomena in degenerate quantum gases, Physica D 238(15), 1289 (2009)
https://doi.org/10.1016/j.physd.2009.05.001
|
25 |
I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80(3), 885 (2008)
https://doi.org/10.1103/RevModPhys.80.885
|
26 |
S. S. Li, J. B. Yuan, and L. M. Kuang, Coherent manipulation of spin squeezing in atomic Bose-Einstein condensate via electromagnetically induced transparency, Front. Phys. 8(1), 27 (2013)
https://doi.org/10.1007/s11467-013-0288-x
|
27 |
J. F. Annett, Superconductivity, Superfluids and Condensates, New York: Oxford University Press, 2004
|
28 |
R. Camassa, J. M. Hyman, and B. P. Luce, Nonlinear waves and solitons in physical systems, Physica D 123(1-4), 1 (1998)
https://doi.org/10.1016/S0167-2789(98)00108-0
|
29 |
S. W. Song, L. Wen, C. F. Liu, S. C. Gou, and W. M. Liu, Ground states, solitons and spin textures in spin-1 Bose-Einstein condensates, Front. Phys. 8(3), 302 (2013)
https://doi.org/10.1007/s11467-013-0350-8
|
30 |
P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-González, Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment, Berlin: Springer-Verlag, 2008
https://doi.org/10.1007/978-3-540-73591-5
|
31 |
E. Hecht, Optics, 4th Ed., San Francisco: Addison-Wesley, 2002
|
32 |
E. Yablonovitch, Light emission in photonic crystal micro-cavities, in: Confined Electrons and Photons: New Physics and Applications, edited by E. Burstein and C. Weisbuch, New York: Springer Science & Business Media, 1995, pp. 635–646
https://doi.org/10.1007/978-1-4615-1963-8_20
|
33 |
J. Klaers, J. Schmitt, F. Vewinger, and M. Weitz, Bose-Einstein condensation of photons in an optical microcavity., Nature 468(7323), 545 (2010)
https://doi.org/10.1038/nature09567
pmid: 21107426
|
34 |
J. Klaers, J. Schmitt, T. Damm, F. Vewinger, and M. Weitz, Bose-Einstein condensation of paraxial light, Appl. Phys. B 105(1), 17 (2011)
https://doi.org/10.1007/s00340-011-4734-6
|
35 |
J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd Ed., New York: Springer, 2006
https://doi.org/10.1007/978-0-387-46312-4
|
36 |
B. I. Stepanov and L. P. Kazachenko, Universal relationship between absorption and emission spectra taking the solvent effect into account, J. Appl. Spectrosc. 14(5), 596 (1971)
https://doi.org/10.1007/BF00605796
|
37 |
J. Klaers, F. Vewinger, and M. Weitz, Thermalization of a two-dimensional photonic gas in a white wall photon box, Nat. Phys. 6(7), 512 (2010)
https://doi.org/10.1038/nphys1680
|
38 |
P. W. Milonni and J. H. Eberly, Laser Physics, New Jersey: John Wiley and Sons, 2010
|
39 |
W. T. Silfvast, Laser Fundamentals, 2nd Ed., Cambridge: Cambridge University Press, 2004
https://doi.org/10.1017/CBO9780511616426
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|