Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2016, Vol. 11 Issue (4) : 114209    https://doi.org/10.1007/s11467-016-0581-6
RESEARCH ARTICLE
The role of microwaves in the enhancement of laser-induced plasma emission
Ali Khumaeni1,*(),Katsuaki Akaoka2,Masabumi Miyabe2,Ikuo Wakaida2
1. Department of Physics, Faculty of Science and Mathematics, Diponegoro University, Tembalang, Semarang 50275, Indonesia
2. Fuel Debris Analysis Group, Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency, Tokai-mura, Ibaraki-ken 311-1195, Japan
 Download: PDF(713 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We studied experimentally the effect of microwaves (MWs) on the enhancement of plasma emission achieved by laser-induced breakdown spectroscopy (LIBS). A laser plasma was generated on a calcium oxide pellet by a Nd:YAG laser (5 mJ, 532 nm, 8 ns) in reduced-pressure argon surrounding gas. A MW radiation (400 W) was injected into the laser plasma via a loop antenna placed immediately above the laser plasma to enhance the plasma emission. The results confirmed that when the electromagnetic field was introduced into the laser plasma region by the MWs, the lifetime of the plasma was extended from 50 to 500 s, similar to the MW duration. Furthermore, the plasma temperature and electron density increased to approximately 10900 K and 1.5×1018 cm−3, respectively and the size of the plasma emission was extended to 15 mm in diameter. As a result, the emission intensity of Ca lines obtained using LIBS with MWs was enhanced by approximately 200 times compared to the case of LIBS without MWs.

Keywords laser-induced breakdown spectroscopy      LIBS      microwave-assisted laser-induced breakdown spectroscopy      MA-LIBS      enhancement of laser plasma emission     
Corresponding Author(s): Ali Khumaeni   
Issue Date: 28 June 2016
 Cite this article:   
Ali Khumaeni,Katsuaki Akaoka,Masabumi Miyabe, et al. The role of microwaves in the enhancement of laser-induced plasma emission[J]. Front. Phys. , 2016, 11(4): 114209.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-016-0581-6
https://academic.hep.com.cn/fop/EN/Y2016/V11/I4/114209
1 D. A. Cremers and L. J. Radziemski, Handbook of Laser- Induced Breakdown Spectroscopy, Chichester: Wiley, 2006
https://doi.org/10.1002/0470093013
2 V. Miziolek, Palleschi, and I. Schechter (<Eds/>.), Laser Induced Breakdown Spectroscopy, Cambridge: Cambridge University Press, 2006
3 Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, Laser-induced breakdown spectroscopy in China, Front. Phys. 9(4), 419 (2014)
https://doi.org/10.1007/s11467-013-0410-0
4 R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. Mc- Nesby, and P. D. French, Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments, Spectrochim. Acta B 56(6), 777 (2001)
https://doi.org/10.1016/S0584-8547(01)00229-4
5 M. Z. Martin, N. Labbé, N. André, R. Harris, M. Ebinger, S. D. Wullschleger, and A. A. Vass, High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications, Spectrochim. Acta B 62(12), 1426 (2007)
https://doi.org/10.1016/j.sab.2007.10.046
6 R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, Laser-induced breakdown spectrometry-applications for production control and quality assurance in the steel industry, Spectrochim. Acta B 56(6), 637 (2001)
https://doi.org/10.1016/S0584-8547(01)00214-2
7 M. O. Vieitez, J. Hedberg, O. Launila, and L. Berg, Elemental analysis of steel scrap metals and minerals by laser-induced breakdown spectroscopy, Spectrochim. Acta B 60(7-8), 920 (2005)
https://doi.org/10.1016/j.sab.2005.05.024
8 Z. B. Ni, X. L. Chen, H. B. Fu, J. G. Wang, and F. Z. Dong, Study on quantitative analysis of slag based on spectral normalization of laser-induced plasma image, Front. Phys. 9(4), 439 (2014)
https://doi.org/10.1007/s11467-014-0433-1
9 A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, and J. Wright, Remote material analysis of nuclear power station steam generator tubes by laserinduced breakdown spectroscopy, Spectrochim. Acta B 56(6), 821 (2001)
https://doi.org/10.1016/S0584-8547(01)00232-4
10 M. F. Bustamante, C. A. Rinaldi, and J. C. Ferrero, Laser induced breakdown spectroscopy characterization of Ca in a soil depth profile, Spectrochim. Acta B 57(2), 303 (2002)
https://doi.org/10.1016/S0584-8547(01)00394-9
11 P. Maravelaki-Kalaitzaki, D. Anglos, V. Kilikoglou, and V. Zafiropulos, Compositional characterization of encrustation on marble with laser induced breakdown spectroscopy, Spectrochim. Acta B 56(6), 887 (2001)
https://doi.org/10.1016/S0584-8547(01)00226-9
12 D. Body and B. L. Chadwick, Simultaneous elemental analysis system using laser induced breakdown spectroscopy, Rev. Sci. Instrum. 72(3), 1625 (2001)
https://doi.org/10.1063/1.1338486
13 J. Uebbing, J. Brust, W. Sdorra, F. Leis, and K. Niemax, Reheating of a laser-produced plasma by a second pulse laser, Appl. Spectrosc. 45(9), 1419 (1991)
https://doi.org/10.1366/0003702914335445
14 V. I. Babushok, J. L. Jr DeLucia, C. A. Gottfried, C. A. Munson, and A. W. Miziolek, Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement, Spectrochim. Acta B 61(9), 999 (2006)
https://doi.org/10.1016/j.sab.2006.09.003
15 F. F. Chen, X. J. Su, and W. D. Zhou, Effect of parameters on Si plasma emission in collinear double-pulse laserinduced breakdown spectroscopy, Front. Phys. 10(5), 104207 (2015)
https://doi.org/10.1007/s11467-015-0500-2
16 R. Sattmann, V. Sturm, and R. Noll, Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses, J. Phys. D 28(10), 2181 (1995)
https://doi.org/10.1088/0022-3727/28/10/030
17 Envimetrics, LAMPS Unit Manual, 2009
18 Y. Liu, M. Baudelet, and M. Richardson, Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: Evaluation on ceramics, J. Anal. At. Spectrom. 25(8), 1316 (2010)
https://doi.org/10.1039/c003304a
19 B. Kearton and Y. Mattley, Laser-induced breakdown spectroscopy: Sparking new applications, Nat. Photonics 2(9), 537 (2008)
https://doi.org/10.1038/nphoton.2008.173
20 Y. Liu, B. Bousquet, M. Baudelet, and M. Richardson, Improvement of the sensitivity for the measurement of copper concentrations in soil by microwave-assisted laserinduced breakdown spectroscopy, Spectrochim. Acta B 73, 89 (2012)
https://doi.org/10.1016/j.sab.2012.06.041
21 Y. Ikeda, A. Moon, and M. Kaneko, Development of microwave-enhanced spark-induced breakdown spectroscopy, Appl. Opt. 49(13), C95 (2010)
https://doi.org/10.1364/AO.49.000C95
22 M. Oba, Y. Maruyama, K. Akaoka, M. Miyabe, and I. Wakaida, Double-pulse LIBS of gadolinium oxide ablated by a femto- and nano-second laser pulses, Appl. Phys. A 101(3), 545 (2010)
https://doi.org/10.1007/s00339-010-5894-7
23 http://physics.nist.gov/PhysRefData/ASD/lines_form.html
24 V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions, Pramana-J. Phys. 74(6), 983 (2010)
25 J. Zalach and St. Franke, Interative Boltzmann plot method for temperature and pressure determination in a xenon high pressure discharge lamp, J. Appl. Phys. 113, 043303 (2013)
https://doi.org/10.1063/1.4788701
26 A. De Giacomo, M. Dell’Aglio, D. Bruno, R. Gaudiuso, and O. De Pascale, Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples, Spectrochim. Acta B 63(7), 805 (2008)
https://doi.org/10.1016/j.sab.2008.05.002
27 S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, Electron density and temperature measurements in a laser produced carbonplasma, J. Appl. Phys. 82(5), 2140 (1997)
https://doi.org/10.1063/1.366276
28 R. W. P. McWhirter, Spectral Intensities, in: Plasma Diagnostic Techniques, edited by R. H. Huddlestone and S. L. Leonard, New York: Academic, 1965
[1] Lian-Bo Guo (郭连波), Deng Zhang (张登), Lan-Xiang Sun (孙兰香), Shun-Chun Yao (姚顺春), Lei Zhang (张雷), Zhen-Zhen Wang (王珍珍), Qian-Qian Wang (王茜蒨), Hong-Bin Ding (丁洪斌), Yuan Lu (卢渊), Zong-Yu Hou (侯宗余), Zhe Wang (王哲). Development in the application of laser-induced breakdown spectroscopy in recent years: A review[J]. Front. Phys. , 2021, 16(2): 22500-.
[2] Yang-Ting Fu, Wei-Lun Gu, Zong-Yu Hou, Sher Afgan Muhammed, Tian-Qi Li, Yun Wang, Zhe Wang. Mechanism of signal uncertainty generation for laser-induced breakdown spectroscopy[J]. Front. Phys. , 2021, 16(2): 22502-.
[3] Shuai Zhang, Sahar Sheta, Zong-Yu Hou, Zhe Wang. On the improvement of signal repeatability in laser-induced air plasmas[J]. Front. Phys. , 2018, 13(2): 135201-.
[4] Yang Zhao (赵洋),Lei Zhang (张雷),Shu-Xia Zhao (赵书霞),Yu-Fang Li (李郁芳),Yao Gong (弓瑶),Lei Dong (董磊),Wei-Guang Ma (马维光),Wang-Bao Yin (尹王保),Shun-Chun Yao (姚顺春),Ji-Dong Lu (陆继东),Lian-Tuan Xiao (肖连团),Suo-Tang Jia (贾锁堂). Review of methodological and experimental LIBS techniques for coal analysis and their application in power plants in China[J]. Front. Phys. , 2016, 11(6): 114211-.
[5] Yong Zhang,Yun-Hai Jia,Chun Yang,Dong-Ling Li,Jia Liu,Yong-Yan Chen,Ying Liu,Yi-Xiang Duan. Characterization of the globular oxide inclusion ratings in steel using laser-induced breakdown spectroscopy[J]. Front. Phys. , 2016, 11(6): 115205-.
[6] Cong Li (李聪),Chun-Lei Feng (冯春雷),Hassan Yousefi Oderji,Guang-Nan Luo (罗广南),Hong-Bin Ding (丁洪斌). Review of LIBS application in nuclear fusion technology[J]. Front. Phys. , 2016, 11(6): 114214-.
[7] Zhen-Zhen Wang (王珍珍),Yoshihiro Deguchi (出口祥啓),Zhen-Zhen Zhang (张臻臻),Zhe Wang (王哲),Xiao-Yan Zeng (曾晓雁),Jun-Jie Yan (严俊杰). Laser-induced breakdown spectroscopy in Asia[J]. Front. Phys. , 2016, 11(6): 114213-.
[8] Yong Xin (辛勇),Lan-Xiang Sun (孙兰香),Zhi-Jia Yang (杨志家),Peng Zeng (曾鹏),Zhi-Bo Cong (丛智博),Li-Feng Qi (齐立峰). In situ analysis of magnesium alloy using a standoff and double-pulse laser-induced breakdown spectroscopy system[J]. Front. Phys. , 2016, 11(5): 115207-.
[9] Yang-Min Guo,Lian-Bo Guo,Jia-Ming Li,Hong-Di Liu,Zhi-Hao Zhu,Xiang-You Li,Yong-Feng Lu,Xiao-Yan Zeng. Research progress in Asia on methods of processing laser-induced breakdown spectroscopy data[J]. Front. Phys. , 2016, 11(5): 114212-.
[10] Shi-Lei Zhong (钟石磊),Yuan Lu (卢渊),Wei-Jin Kong (孔伟金),Kai Cheng (程凯),Ronger Zheng (郑荣儿). Quantitative analysis of lead in aqueous solutions by ultrasonic nebulizer assisted laser induced breakdown spectroscopy[J]. Front. Phys. , 2016, 11(4): 114202-.
[11] Fang-Fang Chen,Xue-Jiao Su,Wei-Dong Zhou. Effect of parameters on Si plasma emission in collinear double-pulse laser-induced breakdown spectroscopy[J]. Front. Phys. , 2015, 10(5): 104207-.
[12] Zhe Wang, Ting-Bi Yuan, Zong-Yu Hou, Wei-Dong Zhou, Ji-Dong Lu, Hong-Bin Ding, Xiao-Yan Zeng. Laser-induced breakdown spectroscopy in China[J]. Front. Phys. , 2014, 9(4): 419-438.
[13] Zhi-Bo Ni, Xing-Long Chen, Hong-Bo Fu, Jing-Ge Wang, Feng-Zhong Dong. Study on quantitative analysis of slag based on spectral normalization of laser-induced plasma image[J]. Front. Phys. , 2014, 9(4): 439-445.
[14] Yong Zhang, Yun-Hai Jia, Jin-Wen Chen, Xue-Jing Shen, Lei Zhao, Chun Yang, Yong-Yan Chen, Yong-Hui Zhang, Peng-Cheng Han. Study on parameters influencing analytical performance of laser-induced breakdown spectroscopy[J]. Front. Phys. , 2012, 7(6): 714-720.
[15] Zhe Wang, Ting-Bi Yuan, Siu-Lung Lui, Zong-Yu Hou, Xiong-Wei Li, Zheng Li, Wei-Dou Ni. Major elements analysis in bituminous coals under different ambient gases by laser-induced breakdown spectroscopy with PLS modeling[J]. Front. Phys. , 2012, 7(6): 708-713.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed