Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2016, Vol. 11 Issue (6) : 114207    https://doi.org/10.1007/s11467-016-0592-3
Research article
Preliminary investigation into feasibility of dissolved methane measurement using cavity ringdown spectroscopy technique
Zhen-Nan Wang (王振南),Wang-Quan Ye (叶旺全),Xiao-Ning Luan (栾晓宁),Fu-Jun Qi (亓夫军),Kai Cheng (程凯),Ronger Zheng (郑荣儿)()
Optics and Optoelectronics Laboratory, Ocean University of China, Qingdao 266100, China
 Download: PDF(903 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

For the exploration of gas hydrate resources by measuring the dissolved methane concentration in seawater, a continuous-wave cavity ringdown spectroscopy (CW-CRDS) experimental setup was constructed for trace methane detection. A current-modulation method, rather than a cavity-modulation method using an optical switch and a piezoelectric transducer, was employed to realize the cavity excitation and shutoff. Such a current-modulation method enabled the improvement of the experimental setup construction and stability, and the system size and stability are critical for a sensor to be deployed underwater. Ringdown data acquisition and processing were performed, followed by an evaluation of the experimental setup stability and sensitivity. The obtained results demonstrate that great errors are introduced when a large fitting window is selected if the analog-to-digital converter has an insufficient resolution. The ringdown spectrum of methane corresponding to the 2v3 band R(4) branch was captured, and the methane concentration in lab air was determined to be 2.06 ppm. Further experiments for evaluating the quantitative ability of this CW-CRDS experimental setup are underway from which a high-sensitivity methane sensor that can be combined with a degassing system is expected.

Keywords gas hydrate      methane      continuous-wave cavity ringdown spectroscopy      current-modulation method     
Corresponding Author(s): Ronger Zheng (郑荣儿)   
Issue Date: 06 June 2016
 Cite this article:   
Zhen-Nan Wang (王振南),Wang-Quan Ye (叶旺全),Xiao-Ning Luan (栾晓宁), et al. Preliminary investigation into feasibility of dissolved methane measurement using cavity ringdown spectroscopy technique[J]. Front. Phys. , 2016, 11(6): 114207.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-016-0592-3
https://academic.hep.com.cn/fop/EN/Y2016/V11/I6/114207
1 R. D. Hyndman and G. D. Spence, A seismic study of methane hydrate marine bottom simulating reflectors, J. Geophys. Res. 97(B5), 6683 (1992)
https://doi.org/10.1029/92JB00234
2 R. D. Hyndman and E. E. Davis, A mechanism for the formation of methane hydrate and seafloor bottomsimulating reflectors by vertical fluid expulsion, J. Geophys. Res. 97(B5), 7025 (1992)
https://doi.org/10.1029/91JB03061
3 W. S. Holbrook, H. Hoskins, W. T. Wood, R. A. Stephen, and D. Lizarralde, Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling, Science 273(5283), 1840 (1996)
https://doi.org/10.1126/science.273.5283.1840
4 J. Yuan and R. N. Edwards, The assessment of marine gas hydrates through electrical remote sounding: Hydrate without a BSR? Geophys. Res. Lett. 27(16), 2397 (2000)
https://doi.org/10.1029/2000GL011585
5 T. F. Yang, P. C. Chuang, S. Lin, J. C. Chen, Y. Wang, and S. H. Chung, Methane venting in gas hydrate potential area offshore of SW Taiwan: evidence of gas analysis of water column samples, Terr. Atmos. Ocean. Sci. 17, 933 (2006)
6 C. K. Paull, W. Ussler, W. S. Borowski, and F. N. Spiess, Methane-rich plumes on the Carolina continental rise: Associations with gas hydrates, Geology 23(1), 89 (1995)
https://doi.org/10.1130/0091-7613(1995)023<0089:MRPOTC>2.3.CO;2
7 C. A. Chen, Abnormally high CH4 concentrations in seawater at mid-depths on the continental slopes of the northern South China Sea, Terr. Atmos. Ocean. Sci. 17, 951 (2006)
8 Y. Zhang, Methane escape from gas hydrate systems in marine environment, and methane-driven oceanic eruptions, Geophys. Res. Lett. 30(7), 1398 (2003)
https://doi.org/10.1029/2002GL016658
9 H. Zhou, Z. Wu, X. Peng, L. Jiang, and S. Tang, Detection of methane plumes in the water column of Logatchev hydrothermal vent field, Mid-Atlantic Ridge, Chin. Sci. Bull. 52(15), 2140 (2007)
https://doi.org/10.1007/s11434-007-0285-y
10 E. J. Sauter, S. I. Muyakshin, J. L. Charlou, M. Schlüter,, A. Boetius, K. Jerosch, E. Damm, J. P. Foucher, and M. Klages, Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydratecoated methane bubbles, Earth Planet. Sci. Lett. 243(3-4), 354 (2006)
https://doi.org/10.1016/j.epsl.2006.01.041
11 S. Watanabe, N. Higashitani, N. Tsurushima, and S. Tsunogai, Methane in the western North Pacific, J. Oceanogr. 51(1), 39 (1995)
https://doi.org/10.1007/BF02235935
12 H. W. Bange, U. H. Bartell, S. Rapsomanikis, and M. O. Andreae, Methane in the Baltic and North Seas and a reassessment of the marine emissions of methane, Global Biogeochem. Cycles 8(4), 465 (1994)
https://doi.org/10.1029/94GB02181
13 N. J. P. Owens, C. S. Law, R. F. C. Mantoura, P. H. Burkill, and C. A. Llewellyn, Methane flux to the atmosphere from the Arabian Sea, Nature 354(6351), 293 (1991)
https://doi.org/10.1038/354293a0
14 B. D. Tilbrook and D. M. Karl, Methane sources, distributions and sinks from California coastal waters to the oligotrophic North Pacific gyre, Mar. Chem. 49(1), 51 (1995)
https://doi.org/10.1016/0304-4203(94)00058-L
15 A. O’Keefe and D. A. G. Deacon, Cavity ring‐down optical spectrometer for absorption measurements using pulsed laser sources, Rev. Sci. Instrum. 59(12), 2544 (1988)
https://doi.org/10.1063/1.1139895
16 D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, CW cavity ring down spectroscopy, Chem. Phys. Lett. 264(3–4), 316 (1997)
https://doi.org/10.1016/S0009-2614(96)01351-6
17 B. L. Fawcett, A. M. Parkes, D. E. Shallcross, and A. J. Orr-Ewing, Trace detection of methane using continuous wave cavity ring-down spectroscopy at 1.65 μm, Phys. Chem. Chem. Phys. 4(24), 5960 (2002)
https://doi.org/10.1039/B208486B
18 M. Hippler and M. Quack, High-resolution Fourier transform infrared and cw-diode laser cavity ringdown spectroscopy of the v2+2v3 band of methane near 7510 cm−1 in slit jet expansions and at room temperature, J. Chem. Phys. 116(14), 6045 (2002)
https://doi.org/10.1063/1.1433505
19 J. J. Scherer, D. Voelkel, D. J. Rakestraw, J. B. Paul, C. P. Collier, R. J. Saykally, and A. O’Keefe, Infrared cavity ringdown laser absorption spectroscopy (IR-CRLAS), Chem. Phys. Lett. 245(2–3), 273 (1995)
https://doi.org/10.1016/0009-2614(95)00969-B
20 C. Wang, N. Srivastava, B. A. Jones, and R. B. Reese, A novel multiple species ringdown spectrometer for in situ measurements of methane, carbon dioxide, and carbon isotope, Appl. Phys. B 92(2), 259 (2008)
https://doi.org/10.1007/s00340-008-3077-4
21 E. R. Crosson, A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor, Appl. Phys. B 92(3), 403 (2008)
https://doi.org/10.1007/s00340-008-3135-y
22 S. A. Yvon-Lewis, L. Hu, J. D. Kessler, F. Garcia Tigreros, E. W. Chan, and M. Du, Methane flux to the atmosphere from the Deepwater Horizon oil leak, AGU Fall Meet. Abstr. 1, 06 (2010)
23 W. Gülzow, G. Rehder, B. Schneider, J. S. V. Deimling, and B. Sadkowiak,Limnol. A new method for continuous measurement of methane and carbon dioxide in surface waters using off-axis integrated cavity output spectroscopy (ICOS): An example from the Baltic Sea, Oceanogr, Methods 9, 176 (2011)
24 M. Heimann, Atmospheric science: Enigma of the recent methane budget, Nature 476(7359), 157 (2011)
https://doi.org/10.1038/476157a
[1] Xiao ZHOU (周啸), Jian ZHOU (周健), Kun Lü (吕坤), Qiang SUN (孙强). Tripyrrylmethane based 2D porous structure for hydrogen storage[J]. Front. Phys. , 2011, 6(2): 220-223.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed