|
|
Effects of frustration on explosive synchronization |
Xia Huang1,Jian Gao2,Yu-Ting Sun2,Zhi-Gang Zheng3,Can Xu2,*( ) |
1. Department of Mathematics and Physics, North China Electric Power University, Beijing 102206, China 2. Department of Physics and the Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Beijing), Beijing Normal University, Beijing 100875, China 3. College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China |
|
|
Abstract In this study, we consider the emergence of explosive synchronization in scale-free networks by considering the Kuramoto model of coupled phase oscillators. The natural frequencies of oscillators are assumed to be correlated with their degrees and frustration is included in the system. This assumption can enhance or delay the explosive transition to synchronization. Interestingly, a de-synchronization phenomenon occurs and the type of phase transition is also changed. Furthermore, we provide an analytical treatment based on a star graph, which resembles that obtained in scale-free networks. Finally, a self-consistent approach is implemented to study the de-synchronization regime. Our findings have important implications for controlling synchronization in complex networks because frustration is a controllable parameter in experiments and a discontinuous abrupt phase transition is always dangerous in engineering in the real world.
|
Keywords
coupled phase oscillator
explosive synchronization
frustration
|
Corresponding Author(s):
Can Xu
|
Issue Date: 06 June 2016
|
|
1 |
A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge: Cambridge University Press, 2001, pp 279–296
https://doi.org/10.1017/CBO9780511755743.013
|
2 |
J. Buck, Synchronous rhythmic flashing of fireflies (II), Q. Rev. Biol. 63(3), 265 (1988)
https://doi.org/10.1086/415929
|
3 |
B. Georges, J. Grollier, V. Cros, and A. Fert, Impact of the electrical connection of spin transfer nano-oscillators on their synchronization: An analytical study, Appl. Phys. Lett. 92(23), 232504 (2008)
https://doi.org/10.1063/1.2945636
|
4 |
I. Z. Kiss, Y. Zhai, and J. L. Hudson, Emerging coherence in a population of chemical oscillators, Science 296(5573), 1676 (2002)
https://doi.org/10.1126/science.1070757
|
5 |
B. Eckhardt, E. Ott, S. H. Strogatz, D. M. Abrams, and A. McRobie, Modeling walker synchronization on the Millennium Bridge, Phys. Rev. E 75(2), 021110 (2007)
https://doi.org/10.1103/PhysRevE.75.021110
|
6 |
Z. Néda, E. Ravasz, T. Vicsek, Y. Brechet, and A. L. Barabási, Physics of the rhythmic applause, Phys. Rev. E 61, 6987 (2000)
https://doi.org/10.1103/PhysRevE.61.6987
|
7 |
Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Berlin: Springer, 1984, pp 75–76
https://doi.org/10.1007/978-3-642-69689-3
|
8 |
S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Physica D 143(1–4), 1 (2000)
https://doi.org/10.1016/S0167-2789(00)00094-4
|
9 |
J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, F. Ritort, and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys. 77(1), 137 (2005)
https://doi.org/10.1103/RevModPhys.77.137
|
10 |
A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, Synchronization in complex networks, Phys. Rep. 469(3), 93 (2008)
https://doi.org/10.1016/j.physrep.2008.09.002
|
11 |
F. A. Rodrigues, T. K. D. M. Peron, P. Ji, and J. Kurths, The Kuramoto model in complex networks, Phys. Rep. 610, 1 (2016)
https://doi.org/10.1016/j.physrep.2015.10.008
|
12 |
J. Gómez-Gardeñes, S. Gómez, A. Arenas, and Y. Moreno, Explosive synchronization transitions in scalefree networks, Phys. Rev. Lett. 106(12), 128701 (2011)
https://doi.org/10.1103/PhysRevLett.106.128701
|
13 |
W. Q. Liu, Y. Wu, J. H. Xiao, and M. Zhan, Effects of frequency-degree correlation on synchronization transition in scale-free networks, Europhys. Lett. 101(3), 38002 (2013)
https://doi.org/10.1209/0295-5075/101/38002
|
14 |
T. K. D. M. Peron and F. A. Rodrigues, Explosive synchronization enhanced by time-delayed coupling, Phys. Rev. E 86(1), 016102 (2012)
https://doi.org/10.1103/PhysRevE.86.016102
|
15 |
I. Leyva, A. Navas, I. Sendina-Nadal, J. A. Almendral, J. M. Buldú, M. Zanin, D. Papo, and S. Boccaletti, Explosive transitions to synchronization in networks of phase oscillators, Sci. Rep. 3, 1281 (2013)
https://doi.org/10.1038/srep01281
|
16 |
L. H. Zhu, L. Tian, and D. N. Shi, Criterion for the emergence of explosive synchronization transitions in networks of phase oscillators, Phys. Rev. E 88(4), 042921 (2013)
https://doi.org/10.1103/PhysRevE.88.042921
|
17 |
X. Zhang, X. Hu, J. Kurths, and Z. Liu, Explosive synchronization in a general complex network, Phys. Rev. E 88, 010802(R) (2013)
|
18 |
I. Leyva, I. Sendina-Nadal, J. A. Almendral, A. Navas, S. Olmi, and S. Boccaletti, Explosive synchronization in weighted complex networks, Phys. Rev. E 88(4), 042808 (2013)
https://doi.org/10.1103/PhysRevE.88.042808
|
19 |
X. Hu, S. Boccaletti, W. Huang, X. Zhang, Z. Liu, S. Guan, and C. H. Lai, Exact solution for first-order synchronization transition in a generalized Kuramoto model, Sci. Rep. 4, 7262 (2014)
https://doi.org/10.1038/srep07262
|
20 |
C. Xu, Y. Sun, J. Gao, T. Qiu, Z. Zheng, and S. Guan, Synchronization of phase oscillators with frequencyweighted coupling, Sci. Rep. 6, 21926 (2016)
https://doi.org/10.1038/srep21926
|
21 |
P. Li, K. Zhang, X. Xu, J. Zhang, and M. Small, Reexamination of explosive synchronization in scale-free networks: The effect of disassortativity, Phys. Rev. E 87(4), 042803 (2013)
https://doi.org/10.1103/PhysRevE.87.042803
|
22 |
I. Leyva, R. Sevilla-Escoboza, J. M. Buldú, I. Sendiña- Nadal, J. Gómez-Gardeñes, A. Arenas, Y. Moreno, S. Gómez, R. Jaimes-Reátegui, and S. Boccaletti, Explosive first-order transition to synchrony in networked chaotic oscillators, Phys. Rev. Lett. 108, 168702 (2012)
https://doi.org/10.1103/PhysRevLett.108.168702
|
23 |
P. Ji, T. K. D. M. Peron, P. J. Menck, F. A. Rodrigues, and J. Kurths, Cluster Explosive Synchronization in Complex Networks, Phys. Rev. Lett. 110(21), 218701 (2013)
https://doi.org/10.1103/PhysRevLett.110.218701
|
24 |
T. K. D. M. Peron and F. A. Rodrigues, Determination of the critical coupling of explosive synchronization transitions in scale-free networks by mean-field approximations, Phys. Rev. E 86(5), 056108 (2012)
https://doi.org/10.1103/PhysRevE.86.056108
|
25 |
B. C. Coutinho, A. V. Goltsev, S. N. Dorogovtsev, and J. F. F. Mendes, Kuramoto model with frequency-degree correlations on complex networks, Phys. Rev. E 87(3), 032106 (2013)
https://doi.org/10.1103/PhysRevE.87.032106
|
26 |
Y. Zou, T. Pereira, M. Small, Z. Liu, and J. Kurths, Basin of Attraction Determines Hysteresis in Explosive Synchronization, Phys. Rev. Lett. 112(11), 114102 (2014)
https://doi.org/10.1103/PhysRevLett.112.114102
|
27 |
P. S. Skardal and A. Arenas, Disorder induces explosive synchronization, Phys. Rev. E 89(6), 062811 (2014)
https://doi.org/10.1103/PhysRevE.89.062811
|
28 |
H. Bi, X. Hu, X. Zhang, Y. Zou, Z. Liu, and S. Guan, Explosive oscillation death in coupled Stuart-Landau oscillators, Europhys. Lett. 108(5), 50003 (2014)
https://doi.org/10.1209/0295-5075/108/50003
|
29 |
Y. Chen, Z. Cao, S. Wang, and G. Hu, Self-organized correlations lead to explosive synchronization, Phys. Rev. E 92(2), 022810 (2015)
https://doi.org/10.1103/PhysRevE.91.022810
|
30 |
P. Ji, T. K. D. Peron, F. A. Rodrigues, and J. Kurths, Analysis of cluster explosive synchronization in complex networks, Phys. Rev. E 90(6), 062810 (2014)
https://doi.org/10.1103/PhysRevE.90.062810
|
31 |
X. Zhang, S. Boccaletti, S. Guan, and Z. Liu, Explosive Synchronization in Adaptive and Multilayer Networks, Phys. Rev. Lett. 114(3), 038701 (2015)
https://doi.org/10.1103/PhysRevLett.114.038701
|
32 |
P. Ji, T. K. Peron, F. A. Rodrigues, and J. Kurths, Lowdimensional behavior of Kuramoto model with inertia in complex networks, Sci. Rep. 4, 4783 (2014)
https://doi.org/10.1038/srep04783
|
33 |
X. Zhang, Y. Zou, S. Boccaletti, and Z. Liu, Explosive synchronization as a process of explosive percolation in dynamical phase space, Sci. Rep. 4, 5200 (2014)
https://doi.org/10.1038/srep05200
|
34 |
R. S. Pinto and A. Saa, Explosive synchronization with partial degree-frequency correlation, Phys. Rev. E 91(2), 022818 (2015)
https://doi.org/10.1103/PhysRevE.91.022818
|
35 |
S. Yoon, M. Sorbaro Sindaci, A. V. Goltsev, and J. F. F. Mendes, Critical behavior of the relaxation rate, the susceptibility, and a pair correlation function in the Kuramoto model on scale-free networks, Phys. Rev. E 91(3), 032814 (2015)
https://doi.org/10.1103/PhysRevE.91.032814
|
36 |
C. Xu, J. Gao, Y. Sun, X. Huang, and Z. Zheng, Explosive or continuous: Incoherent state determines the route to synchronization, Sci. Rep. 5, 12039 (2015)
https://doi.org/10.1038/srep12039
|
37 |
S. Ma, H. Bi, Y. Zou, Z. Liu, and S. Guan, Shuttle-run synchronization in mobile ad hoc networks, Front. Phys. 10(3), 100505 (2015)
https://doi.org/10.1007/s11467-015-0475-z
|
38 |
S. Liu, G. Zhang, Z. He, and M. Zhan, Optimal configuration for vibration frequencies in a ring of harmonic oscillators: The nonidentical mass effect, Front. Phys. 10(3), 100503 (2015)
https://doi.org/10.1007/s11467-015-0462-4
|
39 |
Y. Zhang and W. Wan, States and transitions in mixed networks, Front. Phys. 9(4), 523 (2014)
https://doi.org/10.1007/s11467-014-0426-0
|
40 |
X. Huang, M. Zhan, F. Li, and Z. Zheng, Singleclustering synchronization in a ring of Kuramoto oscillators, J. Phys. A Math. Theor. 47(12), 125101 (2014)
https://doi.org/10.1088/1751-8113/47/12/125101
|
41 |
Z. G. Zheng, Frustration effect on synchronization and chaos in coupled oscillators, Chin. Phys. 10, 0703 (2001)
|
42 |
H. Sakaguchi, S. Shinmoto, and Y. kuramoto, Mutual entrainment in oscillator lattices with nonvariational type interaction, Prog. Theor. Phys. 79, 1096 (1988)
|
43 |
E. Berg, E. Altman, and A. Auerbach, Singlet excitations in pyrochlore: A study of quantum frustration, Phys. Rev. Lett. 90(14), 147204 (2003)
https://doi.org/10.1103/PhysRevLett.90.147204
|
44 |
O. E. Omelćhenko and M. Wolfrum, Nonuniversal transitions to synchrony in the Sakaguchi–Kuramoto model, Phys. Rev. Lett. 109, 164101 (2012)
https://doi.org/10.1103/PhysRevLett.109.164101
|
45 |
C. Yokoi, L. Tang, and W. Chou, Ground state of the one-dimensional chiral XY model in a field,Phys. Rev. B 37(4), 2173 (1988)
https://doi.org/10.1103/PhysRevB.37.2173
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|