Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2017, Vol. 12 Issue (1) : 127801    https://doi.org/10.1007/s11467-016-0612-3
RESEARCH ARTICLE
Silicon-erbium ytterbium silicate nanowire waveguides with optimized optical gain
Xiao-Xia Wang1,Wei-Hao Zheng1,Qing-Lin Zhang1,Xiao-Li Zhu1,Hong Zhou1,Xiu-Juan Zhuang1(),An-Lian Pan1(),Xiang-Feng Duan2
1. Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronic Science, and State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
2. Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
 Download: PDF(2079 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Single-crystal erbium silicate nanowires have attracted considerable attention because of their high optical gain. In this work, we report the controlled synthesis of silicon-erbium ytterbium silicate coreshell nanowires and fine-tuning the erbium mole fraction in the shell from x=0.3 to x=1.0, which corresponds to changing the erbium concentration from 4.8×1021 to 1.6×1022 cm−3. By controlling and properly optimizing the composition of erbium and ytterbium in the nanowires, we can effectively suppress upconversion photoluminescence while simultaneously enhancing near-infrared emission. The composition-optimized nanowires have very long photoluminescence lifetimes and large emission crosssections, which contribute to the high optical gain that we observed. We suspended these concentrationoptimized nanowires in the air to measure and analyze their propagation loss and optical gain in the near-infrared communication band. Through systematic measurements using wires with different core sizes, we obtained a maximum net gain of 20±8 dB·mm−1, which occurs at a wavelength of 1534 nm, for a nanowire with a diameter of 600 nm and a silicon core diameter of 300 nm.

Keywords erbium ytterbium silicate      nanowire      erbium concentration      gain     
Corresponding Author(s): Xiu-Juan Zhuang,An-Lian Pan,Xiang-Feng Duan   
Issue Date: 30 December 2016
 Cite this article:   
Xiao-Xia Wang,Wei-Hao Zheng,Qing-Lin Zhang, et al. Silicon-erbium ytterbium silicate nanowire waveguides with optimized optical gain[J]. Front. Phys. , 2017, 12(1): 127801.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-016-0612-3
https://academic.hep.com.cn/fop/EN/Y2017/V12/I1/127801
1 F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, Silicon nanostructures for photonics and photovoltaics, Nat. Nanotechnol. 9(1), 19 (2014)
https://doi.org/10.1038/nnano.2013.271
2 N. Liu, W. Y. Li, M. Pasta, and Y. Cui, Nanomaterials for electrochemical energy storage, Front. Phys. 9(3), 323 (2014)
https://doi.org/10.1007/s11467-013-0408-7
3 R. L. Savio, M. Galli, M. Liscidini, L. C. Andreani, G. Franzò, F. Iacona, M. Miritello, A. Irrera, D. Sanfilippo, A. Piana, and F. Priolo, Photonic crystal light emitting diode based on Er and Si nanoclusters co-doped slot waveguide, Appl. Phys. Lett. 104, 121107 (2014)
https://doi.org/10.1063/1.4869751
4 R. M. Guo, X. J. Wang, K. Zang, B. Wang, L. Wang, L. Gao, and Z. Zhou, Optical amplification in Er/Yb silicate strip loaded waveguide, Appl. Phys. Lett. 99(16), 161115 (2011)
https://doi.org/10.1063/1.3655330
5 N. P. Dasgupta and P. D. Yang, Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion, Front. Phys. 9(3), 289 (2014)
https://doi.org/10.1007/s11467-013-0305-0
6 H. S. Han, S. Y. Seo, J. H. Shin, and N. Park, Coefficient determination related to optical gain in erbiumdoped silicon-rich silicon oxide waveguide amplifier, Appl. Phys. Lett. 81(20), 3720 (2002)
https://doi.org/10.1063/1.1520710
7 Lee, J. H. Shin, and N. Park, Optical gain at 1.5 m in nanocrystal Si sensitized, Er-doped silica waveguide using top-pumping 470 nm LED, J. Lightwave Technol. 23, 19 (2005)
https://doi.org/10.1109/JLT.2004.840341
8 M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, Efficient luminescence and energy transfer in erbium silicate thin films, Adv. Mater. 19(12), 1582 (2007)
https://doi.org/10.1002/adma.200601692
9 H. Isshiki, M. J. A. de Dood, A. Polman, and T. Kimura, Self-assembled infrared-luminescent Er–Si–O crystallites on silicon, Appl. Phys. Lett. 85, 4343 (2004)
https://doi.org/10.1063/1.1814814
10 H. J. Choi, J. H. Shin, K. Suh, H. K. Seong, H. C. Han, and J. C. Lee, Self-organized growth of Si/Silica/Er2Si2O7 core-shell nanowire heterostructures and their luminescence, Nano Lett. 5(12), 2432 (2005)
https://doi.org/10.1021/nl051684h
11 A. L. Pan, L. J. Yin, Z. C. Liu, M. H. Sun, R. B. Liu, P. L. Nichols, Y. G. Wang, and C. Z. Ning, Single-crystal erbium chloride silicate nanowires as a Si-compatible light emission material in communication wavelength, Opt. Mater. Express 1(7), 1202 (2011)
https://doi.org/10.1364/OME.1.001202
12 X. J. Wang, S. Wang, and Z. Zhou, Low threshold ErxYb(Y)2xSiO5 nanowire waveguide amplifier, Appl. Opt. 54(9), 2501 (2015)
https://doi.org/10.1364/AO.54.002501
13 L. Yin, H. Ning, S. Turkdogan, Z. Liu, P. L. Nichols, and C. Z. Ning, Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material, Appl. Phys. Lett. 100(24), 241905 (2012)
https://doi.org/10.1063/1.4729412
14 L. Yin, D. Shelhammer, G. Zhao, Z. Liu, and C. Z. Ning, Erbium concentration control and optimization in erbium yttrium chloride silicate single crystal nanowires as a high gain material, Appl. Phys. Lett. 103(12), 121902 (2013)
https://doi.org/10.1063/1.4821448
15 C. P. Michael, H. B. Yuen, V. A. Sabnis, T. J. Johnson, R. Sewell, R. Smith, A. Jamora, A. Clark, S. Semans, P. B. Atanackovic, and O. Painter, Growth, processing, and optical properties of epitaxial Er2O3 on silicon, Opt. Express 16(24), 19649 (2008)
https://doi.org/10.1364/OE.16.019649
16 X. J. Wang, T. Nakajima, H. Isshiki, and T. Kimura, Fabrication and characterization of Er silicates on SiO2/Si substrates,Appl. Phys. Lett. 95(4), 041906 (2009)
https://doi.org/10.1063/1.3192407
17 X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. Zhou, Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5films on SiO2/Si substrates, Appl. Phys. Lett. 98(7), 071903 (2011)
https://doi.org/10.1063/1.3554750
18 X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, Photoluminescence enhancement and high gain amplification of ErxY2xSiO5 waveguide, J. Appl. Phys. 108(1), 013506 (2010)
https://doi.org/10.1063/1.3446822
19 S. A. Dimitri Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, Giant optical gain in a rare-earth-iondoped microstructure, Adv. Mater. 24, OP19 (2012)
20 X. X. Wang, X. J. Zhuang, S. Yang, Y. Chen, Q. L. Zhang, X. L. Zhu, H. Zhou, P. F. Guo, J. W. Liang, Y. Huang, A. L. Pan, and X. F. Duan, High gain submicrometer optical amplifier at near-infrared communication band, Phys. Rev. Lett. 115(2), 027403 (2015)
https://doi.org/10.1103/PhysRevLett.115.027403
21 B. Wang, R. M. Guo, X. J. Wang, L. Wang, and Z. Zhou, Composition dependence of the Yb-participated strong up-conversions in polycrystalline ErYb silicate, Opt. Mater. 34(8), 1289 (2012)
https://doi.org/10.1016/j.optmat.2012.02.001
22 P. Cardile, M. Miritello, and F. Priolo, Energy transfer mechanisms in Er-Yb-Y disilicate thin films, Appl. Phys. Lett. 100(25), 251913 (2012)
https://doi.org/10.1063/1.4730434
23 M. Miritello, P. Cardile, R. Lo Savio, and F. PrioloEnergy transfer and enhanced 1540 nm emission in Erbium-Ytterbium disilicate thin films, Opt. Express. 19(21), 20761 (2011)
https://doi.org/10.1364/OE.19.020761
24 W. J. Miniscalco, Erbium-doped glasses for fiber amplifiers at 1500 nm, J. Lightwave Technol. 9(2), 234 (1991)
https://doi.org/10.1109/50.65882
25 F. D. Patel, S. DiCarolis, P. Lum, S. Venkatesh, and J. N. Miller, A compact high-performance optical waveguide amplifier, IEEE Photonics Technol. Lett. 16(12), 2607 (2004)
https://doi.org/10.1109/LPT.2004.836350
26 Z. C. Liu, G. J. Zhao, L. J. Yin, and C. Z. Ning, Demonstration of Net Gain in an Erbium Chloride Silicate Single Nanowire Waveguide, Proceeding of Conference on Lasers and Electro-Optics: Science and Innovations, <Date>June 2014</Date>, <BibTranslator>San Jose</BibTranslator>, SM4H.4 (2014)
https://doi.org/10.1364/cleo_si.2014.sm4h.4
27 W. J. Miniscalco and R. S. Quimby, General procedure for the analysis of Er3+ cross sections, Opt. Lett. 16(4), 258 (1991)
https://doi.org/10.1364/OL.16.000258
[1] Gang Peng (彭刚), Xiaoyan Yu (于晓燕), Yan-Lan He (何焰兰), Gong-Yi Li (李公义), Yi-Xing Liu (刘一星), Xinfang Zhang (张鑫方), Xue-Ao Zhang (张学骜). Quantum confinement effect in β-SiC nanowires[J]. Front. Phys. , 2018, 13(4): 137802-.
[2] Hui Sun, Hua Li, Qiang Tian. Fractal dimension study of polaron effects in cylindrical GaAs/AlxGa1−xAs core–shell nanowires[J]. Front. Phys. , 2018, 13(2): 137301-.
[3] Tong Liu (刘彤), Hong Zhang (张红), Xin-Lu Cheng (程新路), Yang Xu (徐阳). Coherent resonance of quantum plasmons in Stone–Wales defected graphene–silver nanowire hybrid system[J]. Front. Phys. , 2017, 12(5): 125201-.
[4] Arthur Losquin,Tom T. A. Lummen. Electron microscopy methods for space-, energy-, and time-resolved plasmonics[J]. Front. Phys. , 2017, 12(1): 127301-.
[5] Shuo Li(李硕), Yi-Fan Dong(董轶凡), Dan-Dan Wang(王丹丹), Wei Chen(陈伟), Lei Huang(黄磊), Chang-Wei Shi(石长玮), Li-Qiang Mai(麦立强). Hierarchical nanowires for high-performance electrochemical energy storage[J]. Front. Phys. , 2014, 9(3): 303-322.
[6] Neil P. Dasgupta, Peidong Yang. Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion[J]. Front. Phys. , 2014, 9(3): 289-302.
[7] Martin H. Magnusson, B. Jonas Ohlsson, Mikael T. Björk, Kimberly A. Dick, Magnus T. Borgström, Knut Deppert, Lars Samuelson. Semiconductor nanostructures enabled by aerosol technology[J]. Front. Phys. , 2014, 9(3): 398-418.
[8] Xue-Wen Fu, Qiang Fu, Liang-Zhi Kou, Xin-Li Zhu, Rui Zhu, Jun Xu, Zhi-Min Liao, Qing Zhao, Wan-Lin Guo, Da-Peng Yu. Modifying optical properties of ZnO nanowires via strain-gradient[J]. Front. Phys. , 2013, 8(5): 509-515.
[9] Feng-Zi Cong, Hong Wei, Xiao-Rui Tian, Hong-Xing Xu. A facile synthesis of branched silver nanowire structures and its applications in surface-enhanced Raman scattering[J]. Front. Phys. , 2012, 7(5): 521-526.
[10] Guang-cun SHAN (单光存), Shu-ying BAO (包术颖), Kang ZHANG (张康), Wei HUANG (黄维). Theoretical study of photon emission from single quantum dot emitter coupled to surface plasmons[J]. Front. Phys. , 2011, 6(3): 313-319.
[11] Ru HUANG (黄如), Run-sheng WANG (王润声). Investigation of gate-all-around silicon nanowire transistors for ultimately scaled CMOS technology from top–down approach[J]. Front Phys Chin, 2010, 5(4): 414-421.
[12] Qiang FU (付强), Lan-feng YUAN (袁岚峰), Yi LUO (罗毅), Jin-long YANG (杨金龙). Exploring at nanoscale from first principles[J]. Front Phys Chin, 2009, 4(3): 256-268.
[13] HAN Yong. Ajellium model analysis on quantum growth of metal nanowires and nanomesas[J]. Front. Phys. , 2008, 3(4): 436-443.
[14] ZHANG Guan-jie, SHU Yong-chun, YAO Jiang-hong, SHU Qiang, DENG Hao-liang, JIA Guo-zhi, WANG Zhan-guo. Characteristics and developments of quantum-dot infrared photodetectors[J]. Front. Phys. , 2006, 1(3): 334-338.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed