Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2017, Vol. 12 Issue (5) : 127402    https://doi.org/10.1007/s11467-016-0637-7
RESEARCH ARTICLE
Enhanced superconductivity in hole-doped Nb2PdS5
Qian Chen1,3,Xiaohui Yang1,3,Xiaojun Yang1,3,Jian Chen1,3,Chenyi Shen1,3,Pan Zhang1,3,Yupeng Li1,3,Qian Tao1,2,Zhu-An Xu1,2,3()
1. Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
2. Zhejiang California International NanoSystems Institute, Zhejiang University, Hangzhou 310058, China
3. Collaborative Innovation Centre of Advanced Microstructures, Nanjing 210093, China
 Download: PDF(577 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We synthesized a series of Nb2Pd1−xRuxS5 polycrystalline samples by a solid-state reaction method and systematically investigated the Ru-doping effect on superconductivity by transport and magnetic measurements. It is found that superconductivity is enhanced with Ru doping and is quite robust upon disorder. Hall coefficient measurements indicate that the charge transport is dominated by hole-type charge carriers similar to the case of Ir doping, suggesting multi-band superconductivity. Upon Ru or Ir doping, Hc2/Tc exhibits a significant enhancement, exceeding the Pauli paramagnetic limit value by a factor of approximately 4. A comparison of Tc and the upper critical field (Hc2) amongst the different doping elements on Pd site, reveals a significant role of spin–orbit coupling.

Keywords superconductivity      hole-doping      upper critical field      spin–orbit coupling      phase diagram     
Corresponding Author(s): Zhu-An Xu   
Issue Date: 03 January 2017
 Cite this article:   
Qian Chen,Xiaohui Yang,Xiaojun Yang, et al. Enhanced superconductivity in hole-doped Nb2PdS5[J]. Front. Phys. , 2017, 12(5): 127402.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-016-0637-7
https://academic.hep.com.cn/fop/EN/Y2017/V12/I5/127402
1 Q. Zhang, G. Li, D. Rhodes, A. Kiswandhi, T. Besara, B. Zeng, J. Sun, T. Siegrist, M. D. Johannes, and L. Balicas, Superconductivity with extremely large upper critical fields in Nb2Pd0.81S5, Sci. Rep. 3, 1446 (2013)
2 S. Khim, B. Lee, K. Y. Choi, B. G. Jeon, D. H. Jang, D. Patil, S. Patil, R. Kim, E. S. Choi, S. Lee, J. Yu, and K. H. Kim, Enhanced upper critical fields in a new quasi-one-dimensional superconductor Nb2PdxSe5, New J. Phys. 15(12), 123031 (2013)
https://doi.org/10.1088/1367-2630/15/12/123031
3 J. Zhang, J. K. Dong, Y. Xu, J. Pan, L. P. He, L. J. Zhang, and S. Y. Li, Superconductivity at 2.5 K in the new transition-metal chalcogenide Ta2PdxSe5, Supercond. Sci. Technol. 28(11), 115015 (2015)
https://doi.org/10.1088/0953-2048/28/11/115015
4 Y. Lu, T. Takayama, A. F. Bangura, Y. Katsura, D. Hashizume, and H. Takagi, Superconductivity at 6 K and the violation of Pauli limit in Ta2PdxS5, J. Phys. Soc. Jpn. 83(2), 023702 (2014)
https://doi.org/10.7566/JPSJ.83.023702
5 A. M. Clogston, Upper limit for the critical field in hard superconductors, Phys. Rev. Lett. 9(6), 266 (1962)
https://doi.org/10.1103/PhysRevLett.9.266
6 Q. R. Zhang, D. Rhodes, B. Zeng, T. Besara, T. Siegrist, M. D. Johannes, and L. Balicas, Anomalous metallic state and anisotropic multiband superconductivity in Nb3Pd0.7Se7, Phys. Rev. B 88(2), 024508 (2013)
https://doi.org/10.1103/PhysRevB.88.024508
7 D. J. Singh, Electronic structure and upper critical field of superconducting Ta2PdxS5, Phys. Rev. B 88(17), 174508 (2013)
https://doi.org/10.1103/PhysRevB.88.174508
8 N. Zhou, X. Xu, J. R. Wang, J. H. Yang, Y. K. Li, Y. Guo, W. Z. Yang, C. Q. Niu, B. Chen, C. Cao, and J. Dai, Controllable spin-orbit coupling and its influence on the upper critical field in the chemically doped quasione- dimensional Nb2PdS5 superconductor, Phys. Rev. B 90(9), 094520 (2014)
https://doi.org/10.1103/PhysRevB.90.094520
9 C. Y. Shen, B. Q. Si, H. Bai, X. J. Yang, Q. Tao, G. H. Cao, and Z. A. Xu, Pd site doping effect on superconductivity in Nb2Pd0.81S5, Europhys. Lett. 113(3), 37006 (2016)
https://doi.org/10.1209/0295-5075/113/37006
10 C. Q. Niu, J. H. Yang, Y. K. Li, B. Chen, N. Zhou, J. Chen, L. L. Jiang, B. Chen, X. X. Yang, C. Cao, J. Dai, and X. Xu, Effect of selenium doping on the superconductivity of Nb2Pd(S1−xSex)5, Phys. Rev. B 88(10), 104507 (2013)
https://doi.org/10.1103/PhysRevB.88.104507
11 A. Gurevich, Enhancement of the upper critical field by nonmagnetic impurities in dirty two-gap superconductors, Phys. Rev. B 67(18), 184515 (2003)
https://doi.org/10.1103/PhysRevB.67.184515
12 J. P. Carbotte, Properties of boson-exchange superconductors, Rev. Mod. Phys. 62(4), 1027 (1990)
https://doi.org/10.1103/RevModPhys.62.1027
13 I. J. Lee, P. M. Chaikin, and M. J. Naughton, Exceeding the Pauli paramagnetic limit in the critical field of (TMTSF)2PF6, Phys. Rev. B 62(22), R14669 (2000)
https://doi.org/10.1103/PhysRevB.62.R14669
14 N. R. Werthamer, E. Helfand, and P. C. Hohenberg, Temperature and purity dependence of the superconducting critical field, Hc2 (III): Electron spin and spinorbit effects, Phys. Rev. 147(1), 295 (1966)
https://doi.org/10.1103/PhysRev.147.295
15 A. Carrington and J. R. Cooper, Influence of grainboundary scattering on the transport properties of a high-Tcoxide superconductor, Physica C 219(1–2), 119 (1994)
16 D. LeBoeuf, N. Doiron-Leyraud, J. Levallois, R. Daou, J. B. Bonnemaison, N. E. Hussey, L. Balicas, B. J. Ramshaw, R. Liang, D. A. Bonn, W. N. Hardy, S. Adachi, C. Proust, and L. Taillefer, Electron pockets in the Fermi surface of hole-doped high-Tc superconductors, Nature 450(7169), 533 (2007)
https://doi.org/10.1038/nature06332
17 H. N. S. Lee, M. Garcia, H. McKinzie, and A. Wold, The low-temperature electrical and magnetic properties of TaSe2 and NbSe2, J. Solid State Chem. 1(2), 190 (1970)
https://doi.org/10.1016/0022-4596(70)90013-7
18 C. Wang, Y. K. Li, Z. W. Zhu, S. Jiang, X. Lin, Y. K. Luo, S. Chi, L. J. Li, Z. Ren, M. He, H. Chen, Y. T. Wang, Q. Tao, G. H. Cao, and Z. A. Xu, Effects of cobalt doping and phase diagrams of LFe1−xCoxAsO (L= La and Sm),Phys. Rev. B 79(5), 054521 (2009)
https://doi.org/10.1103/PhysRevB.79.054521
19 L. J. Li, Y. K. Luo, Q. B. Wang, H. Chen, Z. Ren, Q. Tao, Y. K. Li, X. Lin, M. He, Z. W. Zhu, G. H. Cao, and Z. A. Xu, Superconductivity induced by Ni doping in BaFe2As2 single crystals, New J. Phys. 11(2), 025008 (2009)
https://doi.org/10.1088/1367-2630/11/2/025008
20 H. Yu, M. Zuo, L. Zhang, S. Tan, C. Zhang, and Y. Zhang, Superconducting fiber with transition temperature up to 7.43 K in Nb2Pd1−xS5 (0.6<x<1), J. Am. Chem. Soc. 135(35), 12987 (2013)
https://doi.org/10.1021/ja4062079
[1] Mike Guidry, Yang Sun, Lian-Ao Wu, Cheng-Li Wu. Fermion dynamical symmetry and strongly-correlated electrons: A comprehensive model of high-temperature superconductivity[J]. Front. Phys. , 2020, 15(4): 43301-.
[2] Xue-Hui Xiao, De-Fang Duan, Yan-Bin Ma, Hui Xie, Hao Song, Da Li, Fu-Bo Tian, Bing-Bing Liu, Hong-Yu Yu, Tian Cui. Ab initio studies of copper hydrides under high pressure[J]. Front. Phys. , 2019, 14(4): 43601-.
[3] Dong-Dong Wang, Bin Liu, Min Liu, Yi-Feng Yang, Shi-Ping Feng. Impurity-induced bound states as a signature of pairing symmetry in multiband superconducting CeCu2Si2[J]. Front. Phys. , 2019, 14(1): 13501-.
[4] Shengshan Qin, Yinxiang Li, Qiang Zhang, Congcong Le, Jiangping Hu. Theoretical studies of superconductivity in doped BaCoSO[J]. Front. Phys. , 2018, 13(3): 137502-.
[5] Ryszard Gonczarek, Mateusz Krzyzosiak, Adam Gonczarek, Lucjan Jacak. Analytical assessment of some characteristic ratios for s-wave superconductors[J]. Front. Phys. , 2018, 13(2): 137403-.
[6] R. Szcze¸śniak, A. P. Durajski, M. W. Jarosik. Strong-coupling superconductivity induced by calcium intercalation in bilayer transition-metal dichalcogenides[J]. Front. Phys. , 2018, 13(2): 137401-.
[7] Jian-Lei Ge,Tian-Ru Wu,Ming Gao,Zhan-Bin Bai,Lu Cao,Xue-Feng Wang,Yu-Yuan Qin,Feng-Qi Song. Weak localization of bismuth cluster-decorated graphene and its spin–orbit interaction[J]. Front. Phys. , 2017, 12(4): 127210-.
[8] Xiang-Zhuo Xing,Wei Zhou,Chun-Qiang Xu,Nan Zhou,Fei-Fei Yuan,Yu-Feng Zhang,Xiao-Feng Xu,Zhi-Xiang Shi. Phase diagram and transport properties of Sb-doped Ca0.88La0.12Fe2As2 single crystals[J]. Front. Phys. , 2017, 12(4): 127401-.
[9] Mateusz Krzyzosiak, Ryszard Gonczarek, Adam Gonczarek, Lucjan Jacak. Applications of the conformal transformation method in studies of composed superconducting systems[J]. Front. Phys. , 2016, 11(6): 117407-.
[10] Jiangping Hu,Jing Yuan. Robustness of s-wave pairing symmetry in iron-based superconductors and its implications for fundamentals of magnetically driven high-temperature superconductivity[J]. Front. Phys. , 2016, 11(5): 117404-.
[11] Cong Xiao,Dingping Li,Zhongshui Ma. Thermoelectric response of spin polarization in Rashba spintronic systems[J]. Front. Phys. , 2016, 11(3): 117201-.
[12] Yongping Zhang,Maren Elizabeth Mossman,Thomas Busch,Peter Engels,Chuanwei Zhang. Properties of spin–orbit-coupled Bose–Einstein condensates[J]. Front. Phys. , 2016, 11(3): 118103-.
[13] Jing-Kun Wang,Wei Yi,Wei Zhang. Two-body physics in quasi-low-dimensional atomic gases under spin–orbit coupling[J]. Front. Phys. , 2016, 11(3): 118102-.
[14] Mike Guidry, Yang Sun. Superconductivity and superfluidity as universal emergent phenomena[J]. Front. Phys. , 2015, 10(4): 107404-.
[15] Wang Rui-Feng(王瑞峰). A possible interplay between electron beams and magnetic fluxes in the Aharonov–Bohm effect[J]. Front. Phys. , 2015, 10(3): 100305-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed