Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2017, Vol. 12 Issue (4) : 127304    https://doi.org/10.1007/s11467-016-0644-8
RESEARCH ARTICLE
Impurity-limited quantum transport variability in magnetic tunnel junctions
Jianing Zhuang1,2,Yin Wang1,3(),Yan Zhou1(),Jian Wang1,3,Hong Guo4,1
1. Department of Physics and the Center of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
2. Institute of Textiles and Clothing, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
3. The University of Hong Kong Shenzhen Institute of Research and Innovation, Shenzhen 518057, China
4. Center for the Physics of Materials and Department of Physics, McGill University, Montreal, PQ, Canada, H3A 2T8
 Download: PDF(875 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We report an extensive first-principles investigation of impurity-induced device-to-device variability of spin-polarized quantum tunneling through Fe/MgO/Fe magnetic tunnel junctions (MTJ). In particular, we calculated the tunnel magnetoresistance ratio (TMR) and the average values and variances of the currents and spin transfer torque (STT) of an interfacially doped Fe/MgO/Fe MTJ. Further, we predicted that N-doped MgO can improve the performance of a doped Fe/MgO/Fe MTJ. Our firstprinciples calculations of the fluctuations of the on/off currents and STT provide vital information for future predictions of the long-term reliability of spintronic devices, which is imperative for high-volume production.

Keywords megnetic tunnel junctions      tunnel magnetoresistance      first principles      NEGF-DFT     
Corresponding Author(s): Yin Wang,Yan Zhou   
Issue Date: 19 December 2016
 Cite this article:   
Jianing Zhuang,Yin Wang,Yan Zhou, et al. Impurity-limited quantum transport variability in magnetic tunnel junctions[J]. Front. Phys. , 2017, 12(4): 127304.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-016-0644-8
https://academic.hep.com.cn/fop/EN/Y2017/V12/I4/127304
1 International technology roadmap for semiconductors,
2 A. Asenov, Random dopant induced threshold voltage lowering and fluctuations in sub-0.1 mm MOSFET’s: A 3D “atomistic” simulation study, IEEE Trans. Electron Dev. 45(12), 2505 (1998)
https://doi.org/10.1109/16.735728
3 P. M. Koenraad and M. E. Flatté, Single dopants in semiconductors, Nat. Mater. 10(2), 91 (2011)
https://doi.org/10.1038/nmat2940
4 H. Ohno, Making nonmagnetic semiconductors ferromagnetic, Science 281(5379), 951 (1998)
https://doi.org/10.1126/science.281.5379.951
5 V. P. Georgiev, E. A. Towie, and A. Asenov, Impact of precisely positioned dopants on the performance of an ultimate silicon nanowire transistor: A full threedimensional NEGF simulation study, IEEE Trans. Electron Dev. 60(3), 965 (2013)
https://doi.org/10.1109/TED.2013.2238944
6 S. Ikeda, J. Hayakawa, Y. M. Lee, F. Matsukura, Y. Ohno, T. Hanyu, and H. Ohno, Magnetic tunnel junctions for spintronic memories and beyond, IEEE Trans. Electron Dev. 54(5), 991 (2007)
https://doi.org/10.1109/TED.2007.894617
7 J. A. Katine and E. E. Fullerton, Device implications of spin-transfer torques, J. Magn. Magn. Mater. 320(7), 1217 (2008)
https://doi.org/10.1016/j.jmmm.2007.12.013
8 S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S. H. Yang, Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers, Nat. Mater. 3(12), 862 (2004)
https://doi.org/10.1038/nmat1256
9 S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions, Nat. Mater. 3(12), 868 (2004)
https://doi.org/10.1038/nmat1257
10 D. Waldron, P. Haney, B. Larade, A. MacDonald, and H. Guo, Nonlinear spin current and magnetoresistance of molecular tunnel junctions, Phys. Rev. Lett. 96(16), 166804 (2006)
https://doi.org/10.1103/PhysRevLett.96.166804
11 Y. Ke, K. Xia, and H. Guo, Oxygen-vacancy-induced diffusive scattering in Fe/MgO/Fe magnetic tunnel junctions, Phys. Rev. Lett. 105(23), 236801 (2010)
https://doi.org/10.1103/PhysRevLett.105.236801
12 S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S. H. Yang, Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers, Nat. Mater. 3(12), 862 (2004)
https://doi.org/10.1038/nmat1256
13 S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions, Nat. Mater. 3(12), 868 (2004)
https://doi.org/10.1038/nmat1257
14 J. C. Slonczewski, Current-driven excitation of magnetic multilayers, J. Magn. Magn. Mater. 159(1–2), L1 (1996)
https://doi.org/10.1016/0304-8853(96)00062-5
15 L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current, Phys. Rev. B 54(13), 9353 (1996)
https://doi.org/10.1103/PhysRevB.54.9353
16 W. H. Butler, X. G. Zhang, T. C. Schulthess, and J. M. Maclaren, Spin-dependent tunneling conductance of FejMgOjFe sandwiches, Phys. Rev. B 63(5), 054416 (2001)
https://doi.org/10.1103/PhysRevB.63.054416
17 J. Zhuang and J. Wang, Conductance fluctuation and shot noise in disordered graphene systems, a perturbation expansion approach, J. Appl. Phys. 114(6), 063708 (2013)
https://doi.org/10.1063/1.4817885
18 Y. Zhu, L. Liu, and H. Guo, Quantum transport theory with nonequilibrium coherent potentials, Phys. Rev. B 88(20), 205415 (2013)
https://doi.org/10.1103/PhysRevB.88.205415
19 Y. Zhu, L. Liu, and H. Guo, Green’s function theory for predicting device-to-device variability, Phys. Rev. B 88(8), 085420 (2013)
https://doi.org/10.1103/PhysRevB.88.085420
20 S. Datta, Electronic Transport in Mesoscopic System, Cambridge: Cambridge University Press, 1995
https://doi.org/10.1017/CBO9780511805776
21 Y. Ke, K. Xia, and H. Guo, Disorder scattering in magnetic tunnel junctions: Theory of nonequilibrium vertex correction, Phys. Rev. Lett. 100(16), 166805 (2008)
https://doi.org/10.1103/PhysRevLett.100.166805
22 J. Maassen, M. Harb, V. Michaud-Rioux, Y. Zhu, and H. Guo, Quantum transport modeling from first principles, Proc. IEEE 101(2), 518 (2013)
https://doi.org/10.1109/JPROC.2012.2197810
23 Y. Zhu and L. Liu, Atomistic Simulation of Quantum Transport in Nanoelectronic Devices, World Scientific, 2016
https://doi.org/10.1142/10072
24 J. Taylor, H. Guo, and J. Wang, Ab initiomodeling of open systems: Charge transfer, electron conduction, and molecular switching of a C60 device, Phys. Rev. B 63, 121104(R) (2001)
25 J. Taylor, H. Guo, and J. Wang, Ab initiomodeling of quantum transport properties of molecular electronic devices, Phys. Rev. B 63(24), 245407 (2001)
https://doi.org/10.1103/PhysRevB.63.245407
26 S. I. Kiselev, J. C. Sankey, I. N. Krivorotov, N. C. Emley, M. Rinkoski, C. Perez, R. A. Buhrman, and D. C. Ralph, Current-induced nanomagnet dynamics for magnetic fields perpendicular to the sample plane, Phys. Rev. Lett. 93(3), 036601 (2004)
https://doi.org/10.1103/PhysRevLett.93.036601
27 D. C. Ralph and M. D. Stiles, Spin transfer torques, J. Magn. Magn. Mater. 320(7), 1190 (2008)
https://doi.org/10.1016/j.jmmm.2007.12.019
28 P. M. Haney, R. A. Duine, A. S. Nunez, and A. H. Mac-Donald, Current-induced torques in magnetic metals: Beyond spin-transfer, J. Magn. Magn. Mater. 320(7), 1300 (2008)
https://doi.org/10.1016/j.jmmm.2007.12.020
29 I. Theodonis, N. Kioussis, A. Kalitsov, M. Chshiev, and W. H. Butler, Anomalous bias dependence of spin torque in magnetic tunnel junctions, Phys. Rev. Lett. 97(23), 237205 (2006)
https://doi.org/10.1103/PhysRevLett.97.237205
30 X. Jia, K. Xia, Y. Ke, and H. Guo, Nonlinear bias dependence of spin-transfer torque from atomic first principles, Phys. Rev. B 84(1), 014401 (2011)
https://doi.org/10.1103/PhysRevB.84.014401
31 I. Turek, V. Drchal, J. Kudrnovský, M. Šob, and P. Weinberger, Electronic Structure of the Disordered Alloys, Surfaces, and Interfaces, Boston: Kluwer, 1977
32 J. Kudrnovský, V. Drchal, and J. Maek, Canonical description of electron states in random alloys, Phys. Rev. B 35(5), 2487 (1987)
https://doi.org/10.1103/PhysRevB.35.2487
33 D. Liu, X. Han, and H. Guo, Junction resistance, tunnel magnetoresistance ratio, and spin-transfer torque in Zndoped magnetic tunnel junctions, Phys. Rev. B 85(24), 245436 (2012)
https://doi.org/10.1103/PhysRevB.85.245436
[1] Jian Lv, Xin Yang, Dan Xu, Yu-Xin Huang, Hong-Bo Wang, Hui Wang. High-pressure polymorphs of LiPN2: A first-principles study[J]. Front. Phys. , 2018, 13(5): 136104-.
[2] Qiang Wang, Jian-Wei Li, Bin Wang, Yi-Hang Nie. First-principles investigation of quantum transport in GeP3 nanoribbon-based tunneling junctions[J]. Front. Phys. , 2018, 13(3): 138501-.
[3] Jian-Wei Li,Bin Wang,Yun-Jin Yu,Ya-Dong Wei,Zhi-Zhou Yu,Yin Wang. Spin-resolved quantum transport in graphene-based nanojunctions[J]. Front. Phys. , 2017, 12(4): 126501-.
[4] Ming LI (李明), Ya-fei LI (李亚飞), Zhen ZHOU (周震), Pan-wen SHEN (申泮文). Metal-decorated defective BN nanosheets as hydrogen storage materials[J]. Front. Phys. , 2011, 6(2): 224-230.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed