|
|
Impurity-limited quantum transport variability in magnetic tunnel junctions |
Jianing Zhuang1,2,Yin Wang1,3( ),Yan Zhou1( ),Jian Wang1,3,Hong Guo4,1 |
1. Department of Physics and the Center of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China 2. Institute of Textiles and Clothing, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China 3. The University of Hong Kong Shenzhen Institute of Research and Innovation, Shenzhen 518057, China 4. Center for the Physics of Materials and Department of Physics, McGill University, Montreal, PQ, Canada, H3A 2T8 |
|
|
Abstract We report an extensive first-principles investigation of impurity-induced device-to-device variability of spin-polarized quantum tunneling through Fe/MgO/Fe magnetic tunnel junctions (MTJ). In particular, we calculated the tunnel magnetoresistance ratio (TMR) and the average values and variances of the currents and spin transfer torque (STT) of an interfacially doped Fe/MgO/Fe MTJ. Further, we predicted that N-doped MgO can improve the performance of a doped Fe/MgO/Fe MTJ. Our firstprinciples calculations of the fluctuations of the on/off currents and STT provide vital information for future predictions of the long-term reliability of spintronic devices, which is imperative for high-volume production.
|
Keywords
megnetic tunnel junctions
tunnel magnetoresistance
first principles
NEGF-DFT
|
Corresponding Author(s):
Yin Wang,Yan Zhou
|
Issue Date: 19 December 2016
|
|
1 |
International technology roadmap for semiconductors,
|
2 |
A. Asenov, Random dopant induced threshold voltage lowering and fluctuations in sub-0.1 mm MOSFET’s: A 3D “atomistic” simulation study, IEEE Trans. Electron Dev. 45(12), 2505 (1998)
https://doi.org/10.1109/16.735728
|
3 |
P. M. Koenraad and M. E. Flatté, Single dopants in semiconductors, Nat. Mater. 10(2), 91 (2011)
https://doi.org/10.1038/nmat2940
|
4 |
H. Ohno, Making nonmagnetic semiconductors ferromagnetic, Science 281(5379), 951 (1998)
https://doi.org/10.1126/science.281.5379.951
|
5 |
V. P. Georgiev, E. A. Towie, and A. Asenov, Impact of precisely positioned dopants on the performance of an ultimate silicon nanowire transistor: A full threedimensional NEGF simulation study, IEEE Trans. Electron Dev. 60(3), 965 (2013)
https://doi.org/10.1109/TED.2013.2238944
|
6 |
S. Ikeda, J. Hayakawa, Y. M. Lee, F. Matsukura, Y. Ohno, T. Hanyu, and H. Ohno, Magnetic tunnel junctions for spintronic memories and beyond, IEEE Trans. Electron Dev. 54(5), 991 (2007)
https://doi.org/10.1109/TED.2007.894617
|
7 |
J. A. Katine and E. E. Fullerton, Device implications of spin-transfer torques, J. Magn. Magn. Mater. 320(7), 1217 (2008)
https://doi.org/10.1016/j.jmmm.2007.12.013
|
8 |
S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S. H. Yang, Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers, Nat. Mater. 3(12), 862 (2004)
https://doi.org/10.1038/nmat1256
|
9 |
S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions, Nat. Mater. 3(12), 868 (2004)
https://doi.org/10.1038/nmat1257
|
10 |
D. Waldron, P. Haney, B. Larade, A. MacDonald, and H. Guo, Nonlinear spin current and magnetoresistance of molecular tunnel junctions, Phys. Rev. Lett. 96(16), 166804 (2006)
https://doi.org/10.1103/PhysRevLett.96.166804
|
11 |
Y. Ke, K. Xia, and H. Guo, Oxygen-vacancy-induced diffusive scattering in Fe/MgO/Fe magnetic tunnel junctions, Phys. Rev. Lett. 105(23), 236801 (2010)
https://doi.org/10.1103/PhysRevLett.105.236801
|
12 |
S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S. H. Yang, Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers, Nat. Mater. 3(12), 862 (2004)
https://doi.org/10.1038/nmat1256
|
13 |
S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions, Nat. Mater. 3(12), 868 (2004)
https://doi.org/10.1038/nmat1257
|
14 |
J. C. Slonczewski, Current-driven excitation of magnetic multilayers, J. Magn. Magn. Mater. 159(1–2), L1 (1996)
https://doi.org/10.1016/0304-8853(96)00062-5
|
15 |
L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current, Phys. Rev. B 54(13), 9353 (1996)
https://doi.org/10.1103/PhysRevB.54.9353
|
16 |
W. H. Butler, X. G. Zhang, T. C. Schulthess, and J. M. Maclaren, Spin-dependent tunneling conductance of FejMgOjFe sandwiches, Phys. Rev. B 63(5), 054416 (2001)
https://doi.org/10.1103/PhysRevB.63.054416
|
17 |
J. Zhuang and J. Wang, Conductance fluctuation and shot noise in disordered graphene systems, a perturbation expansion approach, J. Appl. Phys. 114(6), 063708 (2013)
https://doi.org/10.1063/1.4817885
|
18 |
Y. Zhu, L. Liu, and H. Guo, Quantum transport theory with nonequilibrium coherent potentials, Phys. Rev. B 88(20), 205415 (2013)
https://doi.org/10.1103/PhysRevB.88.205415
|
19 |
Y. Zhu, L. Liu, and H. Guo, Green’s function theory for predicting device-to-device variability, Phys. Rev. B 88(8), 085420 (2013)
https://doi.org/10.1103/PhysRevB.88.085420
|
20 |
S. Datta, Electronic Transport in Mesoscopic System, Cambridge: Cambridge University Press, 1995
https://doi.org/10.1017/CBO9780511805776
|
21 |
Y. Ke, K. Xia, and H. Guo, Disorder scattering in magnetic tunnel junctions: Theory of nonequilibrium vertex correction, Phys. Rev. Lett. 100(16), 166805 (2008)
https://doi.org/10.1103/PhysRevLett.100.166805
|
22 |
J. Maassen, M. Harb, V. Michaud-Rioux, Y. Zhu, and H. Guo, Quantum transport modeling from first principles, Proc. IEEE 101(2), 518 (2013)
https://doi.org/10.1109/JPROC.2012.2197810
|
23 |
Y. Zhu and L. Liu, Atomistic Simulation of Quantum Transport in Nanoelectronic Devices, World Scientific, 2016
https://doi.org/10.1142/10072
|
24 |
J. Taylor, H. Guo, and J. Wang, Ab initiomodeling of open systems: Charge transfer, electron conduction, and molecular switching of a C60 device, Phys. Rev. B 63, 121104(R) (2001)
|
25 |
J. Taylor, H. Guo, and J. Wang, Ab initiomodeling of quantum transport properties of molecular electronic devices, Phys. Rev. B 63(24), 245407 (2001)
https://doi.org/10.1103/PhysRevB.63.245407
|
26 |
S. I. Kiselev, J. C. Sankey, I. N. Krivorotov, N. C. Emley, M. Rinkoski, C. Perez, R. A. Buhrman, and D. C. Ralph, Current-induced nanomagnet dynamics for magnetic fields perpendicular to the sample plane, Phys. Rev. Lett. 93(3), 036601 (2004)
https://doi.org/10.1103/PhysRevLett.93.036601
|
27 |
D. C. Ralph and M. D. Stiles, Spin transfer torques, J. Magn. Magn. Mater. 320(7), 1190 (2008)
https://doi.org/10.1016/j.jmmm.2007.12.019
|
28 |
P. M. Haney, R. A. Duine, A. S. Nunez, and A. H. Mac-Donald, Current-induced torques in magnetic metals: Beyond spin-transfer, J. Magn. Magn. Mater. 320(7), 1300 (2008)
https://doi.org/10.1016/j.jmmm.2007.12.020
|
29 |
I. Theodonis, N. Kioussis, A. Kalitsov, M. Chshiev, and W. H. Butler, Anomalous bias dependence of spin torque in magnetic tunnel junctions, Phys. Rev. Lett. 97(23), 237205 (2006)
https://doi.org/10.1103/PhysRevLett.97.237205
|
30 |
X. Jia, K. Xia, Y. Ke, and H. Guo, Nonlinear bias dependence of spin-transfer torque from atomic first principles, Phys. Rev. B 84(1), 014401 (2011)
https://doi.org/10.1103/PhysRevB.84.014401
|
31 |
I. Turek, V. Drchal, J. Kudrnovský, M. Šob, and P. Weinberger, Electronic Structure of the Disordered Alloys, Surfaces, and Interfaces, Boston: Kluwer, 1977
|
32 |
J. Kudrnovský, V. Drchal, and J. Maek, Canonical description of electron states in random alloys, Phys. Rev. B 35(5), 2487 (1987)
https://doi.org/10.1103/PhysRevB.35.2487
|
33 |
D. Liu, X. Han, and H. Guo, Junction resistance, tunnel magnetoresistance ratio, and spin-transfer torque in Zndoped magnetic tunnel junctions, Phys. Rev. B 85(24), 245436 (2012)
https://doi.org/10.1103/PhysRevB.85.245436
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|