Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2017, Vol. 12 Issue (1) : 120503    https://doi.org/10.1007/s11467-016-0646-6
RESEARCH ARTICLE
Irreversible Markov chain Monte Carlo algorithm for self-avoiding walk
Hao Hu1,2,3,Xiaosong Chen2,Youjin Deng1,2()
1. National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
2. State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
3. School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
 Download: PDF(378 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We formulate an irreversible Markov chain Monte Carlo algorithm for the self-avoiding walk (SAW), which violates the detailed balance condition and satisfies the balance condition. Its performance improves significantly compared to that of the Berretti–Sokal algorithm, which is a variant of the Metropolis–Hastings method. The gained efficiency increases with spatial dimension (D), from approximately 10 times in 2D to approximately 40 times in 5D. We simulate the SAW on a 5D hypercubic lattice with periodic boundary conditions, for a linear system with a size up to L= 128, and confirm that as for the 5D Ising model, the finite-size scaling of the SAW is governed by renormalized exponents, υ*= 2/d and γ/υ*= d/2. The critical point is determined, which is approximately 8 times more precise than the best available estimate.

Keywords Monte Carlo algorithms      self-avoiding walk      irreversible      balance condition     
Corresponding Author(s): Youjin Deng   
Issue Date: 19 December 2016
 Cite this article:   
Hao Hu,Xiaosong Chen,Youjin Deng. Irreversible Markov chain Monte Carlo algorithm for self-avoiding walk[J]. Front. Phys. , 2017, 12(1): 120503.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-016-0646-6
https://academic.hep.com.cn/fop/EN/Y2017/V12/I1/120503
1 P. G. de Gennes, Scaling Concepts in Polymer Physics, Cornell University, Ithaca, 1979
2 P. G. de Gennes, Exponents for the excluded volume problem as derived by the Wilson method, Phys. Lett. A 38(5), 339 (1972)
https://doi.org/10.1016/0375-9601(72)90149-1
3 E. J. Janse van Rensburg, Monte Carlo methods for the self-avoiding walk, J. Phys. A Math. Theor. 42(32), 323001 (2009)
https://doi.org/10.1088/1751-8113/42/32/323001
4 J. R. Norris, Markov Chains, Cambridge University Press, 1998
5 H. Suwa and S. Todo, Markov chain Monte Carlo method without detailed balance, Phys. Rev. Lett. 105(12), 120603 (2010)
https://doi.org/10.1103/PhysRevLett.105.120603
6 S. Todo and H. Suwa, Geometric allocation approaches in Markov chain Monte Carlo, J. Phys. Conf. Ser. 473, 012013 (2013)
https://doi.org/10.1088/1742-6596/473/1/012013
7 K. S. Turitsyn, M. Chertkov, and M. Vucelja, Irreversible Monte Carlo algorithms for efficient sampling, Physica D 240(4–5), 410 (2011)
https://doi.org/10.1016/j.physd.2010.10.003
8 H. C. M. Fernandes and M. Weigel, Non-reversible Monte Carlo simulations of spin models, Comput. Phys. Commun. 182(9), 1856 (2011)
https://doi.org/10.1016/j.cpc.2010.11.017
9 E. Bernard, W. Krauth, and D. Wilson, Event-chain Monte Carlo algorithms for hard-sphere systems, Phys. Rev. E 80(5), 056704 (2009)
https://doi.org/10.1103/PhysRevE.80.056704
10 M. Engel, J. A. Anderson, S. C. Glotzer, M. Isobe, E. P. Bernard, and W. Krauth, Hard-disk equation of state: First-order liquid-hexatic transition in two dimensions with three simulation methods, Phys. Rev. E 87(4), 042134 (2013)
https://doi.org/10.1103/PhysRevE.87.042134
11 M. Michel, S. C. Kapfer, and W. Krauth, Generalized event-chain Monte Carlo: Constructing rejection-free global balance algorithms from infinitesimal steps, J. Chem. Phys. 140(5), 054116 (2014)
https://doi.org/10.1063/1.4863991
12 S. C. Kapfer and W. Krauth, Soft-disk melting: From liquid-hexatic coexistence to continuous transitions, Phys. Rev. Lett. 114(3), 035702 (2015)
https://doi.org/10.1103/PhysRevLett.114.035702
13 M. Michel, J. Mayer, and W. Krauth, Event-chain Monte Carlo for classical continuous spin models, EPL 112(2), 20003 (2015)
https://doi.org/10.1209/0295-5075/112/20003
14 Y. Nishikawa, M. Michel, W. Krauth, and K. Hukushima, Event-chain algorithm for the Heisenberg model: Evidence for z~1 dynamic scaling, Phys. Rev. E 92(6), 063306 (2015)
https://doi.org/10.1103/PhysRevE.92.063306
15 K. Hukushima and Y. Sakai, An irreversible Markovchain Monte Carlo method with skew detailed balance conditions, J. Phys. Conf. Ser. 473, 012012 (2013)
https://doi.org/10.1088/1742-6596/473/1/012012
16 Y. Sakai and K. Hukushima, Dynamics of onedimensional Ising model without detailed balance condition, J. Phys. Soc. Jpn. 82(6), 064003 (2013)
https://doi.org/10.7566/JPSJ.82.064003
17 R. D. Schram and G. T. Barkema, Monte Carlo methods beyond detailed balance, Physica A 418, 88 (2015)
https://doi.org/10.1016/j.physa.2014.06.015
18 A. Berretti and A. D. Sokal, New Monte Carlo method for the self-avoiding walk,J. Stat. Phys. 40(3–4), 483 (1985)
19 N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equations of state calculations by fast computing machines, J. Chem. Phys. 21(6), 1087 (1953)
https://doi.org/10.1063/1.1699114
20 W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika 57(1), 97 (1970)
https://doi.org/10.1093/biomet/57.1.97
21 I. Jensen, A parallel algorithm for the enumeration of self-avoiding polygons on the square lattice, J. Phys. Math. Gen. 36(21), 5731 (2003)
https://doi.org/10.1088/0305-4470/36/21/304
22 J. L. Jacobsen, C. R. Scullard, and A. J. Guttmann, On the growth constant for square-lattice self-avoiding walks, arXiv: 1607.02984 (2016)
23 H. P. Hsu and P. Grassberger, Polymers confined between two parallel plane walls, J. Chem. Phys. 120(4), 2034 (2004)
https://doi.org/10.1063/1.1636454
24 A. L. Owczarek and T. Prellberg, Scaling of selfavoiding walks in high dimensions, J. Phys. Math. Gen. 34(29), 5773 (2001)
https://doi.org/10.1088/0305-4470/34/29/303
25 H. Müller-Krumbhaar and K. Binder, Dynamic properties of the Monte Carlo method in statistical mechanics, J. Stat. Phys. 8, 1 (1973)
https://doi.org/10.1007/BF01008440
26 K. Binder, M. Nauenberg, V. Privman, and A. P. Young, Finite-size tests of hyperscaling, Phys. Rev. B 31(3), 3 (1985)
https://doi.org/10.1103/PhysRevB.31.1498
27 B. Berche, R. Kenna, and J. C. Walter, Hyperscaling above the upper critical dimension, Nucl. Phys. B 865(1), 115 (2012)
https://doi.org/10.1016/j.nuclphysb.2012.07.021
28 F. Flores-Sola, B. Berche, R. Kenna, and M. Weigel, Role of Fourier modes in finite-size scaling above the upper critical dimension, Phys. Rev. Lett. 116(11), 115701 (2016)
https://doi.org/10.1103/PhysRevLett.116.115701
29 M. Wittmann and A. P. Young, Finite-size scaling above the upper critical dimension, Phys. Rev. E 90(6), 062137 (2014)
https://doi.org/10.1103/PhysRevE.90.062137
30 Y. Deng, T. M. Garoni, and A. D. Sokal, Dynamic critical behavior of the worm algorithm for the Ising model, Phys. Rev. Lett. 99(11), 110601 (2007)
https://doi.org/10.1103/PhysRevLett.99.110601
31 E. Brézin and J. Zinn-Justin, Finite size effects in phase transitions, Nucl. Phys. B 257, 867 (1985)
https://doi.org/10.1016/0550-3213(85)90379-7
32 N. Prokofev, B. Svistunov, and I. Tupitsyn, Worm algorithm in quantum Monte Carlo simulations, Phys. Lett. A 238(4–5), 253 (1998)
https://doi.org/10.1016/S0375-9601(97)00957-2
33 N. Prokofev and B. Svistunov, Worm algorithms for classical statistical models, Phys. Rev. Lett. 87(16), 160601 (2001)
https://doi.org/10.1103/PhysRevLett.87.160601
34 P. P. Nidras, Grand canonical simulations of the interacting self-avoiding walk model, J. Phys. Math. Gen. 29(24), 7929 (1996)
https://doi.org/10.1088/0305-4470/29/24/017
35 N. Madras and A. D. Sokal, The Pivot algorithm: A highly efficient Monte Carlo method for the self-avoiding walk, J. Stat. Phys. 50(1–2), 109 (1988)
https://doi.org/10.1007/BF01022990
36 P. Grassberger, Pruned-enriched Rosenbluth method: Simulation of q-polymers of chain length up to 1000 000, Phys. Rev. E 56(3), 3682 (1997)
https://doi.org/10.1103/PhysRevE.56.3682
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed