|
|
On the ground state energy of the inhomogeneous Bose gas |
V. B. Bobrov( ),S. A. Trigger( ) |
Joint Institute for High Temperatures, Russian Academy of Sciences, 13/19, Izhorskaia Str., Moscow 125412, Russia |
|
|
Abstract Within the self-consistent Hartree–Fock approximation, an explicit in this approximation expression for the ground state energy of inhomogeneous Bose gas is derived as a functional of the inhomogeneous density of the Bose–Einstein condensate. The results obtained are based on existence of the off-diagonal long-range order in the single-particle density matrix for systems with a Bose–Einstein condensate. This makes it possible to avoid the use of anomalous averages. The explicit form of the kinetic energy, which differs from one in the Gross–Pitaevski approach, is found. The obtained form of kinetic energy is valid beyond the Hartree–Fock approximation and can be applied for arbitrary strong interparticle interaction.
|
Keywords
Bose condensation
elementary excitations
single-particle Green function
density-density Green function
thermodynamic energy
|
Corresponding Author(s):
V. B. Bobrov,S. A. Trigger
|
Issue Date: 17 March 2017
|
|
1 |
M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Observation of Bose– Einstein condensation in a dilute atomic vapor, Science 269(5221), 198 (1995)
https://doi.org/10.1126/science.269.5221.198
|
2 |
E. A. Cornell and C. E. Wieman, Nobel Lecture: Bose– Einstein condensation in a dilute gas, the first 70 years and some recent experiments, Rev. Mod. Phys. 74(3), 875 (2002)
https://doi.org/10.1103/RevModPhys.74.875
|
3 |
L. P. Pitaevskii, Bose–Einstein condensation in magnetic traps: Introduction to the theory, Phys. Usp. 41(6), 569 (1998)
https://doi.org/10.1070/PU1998v041n06ABEH000407
|
4 |
E. P. Gross, Structure of a quantized vortex in boson systems, Nuovo Cim. 20(3), 454 (1961)
https://doi.org/10.1007/BF02731494
|
5 |
L. P. Pitaevskii, Zh. Éksp. Teor. Fiz. 40, 646 (1961) [Sov. Phys. JETP 13, 451 (1961)]
|
6 |
L. P. Pitaevskii, Bose–Einstein condensates in a laser radiation field, Phys. Usp. 49(4), 333 (2006)
https://doi.org/10.1070/PU2006v049n04ABEH006006
|
7 |
E. H. Lieb, R. Seiringer, and J. Yngvason, Bosons in a trap: A rigorous derivation of the Gross–Pitaevskii energy functional, Phys. Rev. A 61(4), 043602 (2000)
https://doi.org/10.1103/PhysRevA.61.043602
|
8 |
E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics, Part 2: Theory of the Condensed State, Oxford: Butterworth-Heinemann, 1980
|
9 |
W. H. Bassichis and L. L. Foldy, Analysis of the Bogoliubov method applied to a simple Boson model, Phys. Rev. 133(4A), 935 (1964)
https://doi.org/10.1103/PhysRev.133.A935
|
10 |
H. Stolz, Theory of interacting bosons without anomalous propagators, Physica A 86(1), 111 (1977)
https://doi.org/10.1016/0378-4371(77)90065-6
|
11 |
C. H. Zhang and H. A. Fertig, Superfluidity without symmetry breaking: The time-dependent Hartree–Fock approximation for Bose-condensed condensates, Phys. Rev. A 74(2), 023613 (2006)
https://doi.org/10.1103/PhysRevA.74.023613
|
12 |
P. Navez and K. Bongs, Gap and screening in Raman scattering of a Bose condensed gas, Europhys. Lett. 88(6), 60008 (2009)
https://doi.org/10.1209/0295-5075/88/60008
|
13 |
V. B. Bobrov, S. A. Trigger, and I. M. Yurin, Coexistence of “bogolons” and the single-particle excitation spectrum with a gap in the degenerate Bose gas, Phys. Lett. A 374(19–20), 1938 (2010)
https://doi.org/10.1016/j.physleta.2010.02.075
|
14 |
A. M. Ettouhami, Re-examining Bogoliubov’s theory of an interacting Bose gas, Prog. Theor. Phys. 127(3), 453 (2012)
https://doi.org/10.1143/PTP.127.453
|
15 |
V. B. Bobrov and S. A. Trigger, Structure factor and distribution function of degenerate Bose gases without anomalous averages, J. Low Temp. Phys. 170(1–2), 31 (2013)
https://doi.org/10.1007/s10909-012-0656-x
|
16 |
V. B. Bobrov, S. A. Triger, and P. Schram, Sov. Phys. JETP 80, 853 (1995)
|
17 |
V. B. Bobrov and S. A. Trigger, On the properties of systems with Bose–Einstein condensate in the Coulomb model of matter, Bull. Lebedev Phys. Inst. 42(1), 13 (2015)
https://doi.org/10.3103/S1068335615010042
|
18 |
V. B. Bobrov, A. G. Zagorodny, and S. A. Trigger, Coulomb interaction potential and Bose–Einstein condensate, Low Temp. Phys. 41, 901 (2015)
https://doi.org/10.1063/1.4936669
|
19 |
L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics, New York: Benjamin, 1962
|
20 |
N. N. Bogolubov and N. N. Jr Bogolubov, Introduction to Quantum Statistical Mechanics, New York: Gordon and Breach, 1992
|
21 |
V. B. Bobrov, S. A. Trigger, and A. Zagorodny, Virial theorem, one-particle density matrix, and equilibrium condition in an external field, Phys. Rev. A 82(4), 044105 (2010)
https://doi.org/10.1103/PhysRevA.82.044105
|
22 |
V. L. Ginzburg and L. D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1950) (English transl.: L. D. Landau, Collected Papers, Oxford: Pergamon, 1965, p. 546)
|
23 |
O. Penrose and L. Onsager, Bose–Einstein condensation and liquid helium, Phys. Rev. 104(3), 576 (1956)
https://doi.org/10.1103/PhysRev.104.576
|
24 |
C. N. Yang, Concept of off-diagonal long-range order and the quantum phases of liquid He and of superconductors, Rev. Mod. Phys. 34(4), 694 (1962)
https://doi.org/10.1103/RevModPhys.34.694
|
25 |
V. B. Bobrov, S. A. Trigger, and A. G. Zagorodny, The off-diagonal long-range order and inhomogeneous Bose– Einstein condensate, Dokl. Phys. 60(4), 147 (2015)
https://doi.org/10.1134/S1028335815040011
|
26 |
F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose–Einstein condensation in trapped gases, Rev. Mod. Phys. 71(3), 463 (1999)
https://doi.org/10.1103/RevModPhys.71.463
|
27 |
P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136(3B), B864 (1964)
https://doi.org/10.1103/PhysRev.136.B864
|
28 |
R. O. Jones and O. Gunnarsson, The density functional formalism, its applications and prospects, Rev. Mod. Phys. 61(3), 689 (1989)
https://doi.org/10.1103/RevModPhys.61.689
|
29 |
N. N. Bogoliubov, On the theory of superfluidity, J. Phys. (USSR) 11, 23 (1947)
|
30 |
V. B. Bobrov, A. Zagorodny, and S. A. Trigger, Coulomb interaction potential and Bose–Einstein condensate, Low Temp. Phys. 41(11), 901 (2015)
https://doi.org/10.1063/1.4936669
|
31 |
N. Navon, S. Piatecki, K. Günter, B. Rem, T. C. Nguyen, F. Chevy, W. Krauth, and C. Salomon, Dynamics and thermodynamics of the low-temperature strongly interacting Bose gas, Phys. Rev. Lett. 107(13), 135301 (2011)
https://doi.org/10.1103/PhysRevLett.107.135301
|
32 |
T. L. Ho and Q. Zhou, Chromatin remodelling during development, Nature 463(7280), 1057 (2010)
https://doi.org/10.1038/nature08911
|
33 |
L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1, Oxford: Butterworth-Heinemann, 1980
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|